Home
Class 12
MATHS
The vector cosalpha.cosbetahati+cosalpha...

The vector `cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk` is a/an

A

Null vector

B

Unit vector

C

Constant vector

D

Vector of magnitude 3

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the vector given by the expression \( \cos \alpha \cos \beta \hat{i} + \cos \alpha \sin \beta \hat{j} + \sin \alpha \hat{k} \), we will calculate its magnitude and analyze the result. ### Step-by-Step Solution: 1. **Write the vector in standard form**: \[ \mathbf{v} = \cos \alpha \cos \beta \hat{i} + \cos \alpha \sin \beta \hat{j} + \sin \alpha \hat{k} \] 2. **Identify the coefficients**: - Coefficient of \( \hat{i} \) is \( a = \cos \alpha \cos \beta \) - Coefficient of \( \hat{j} \) is \( b = \cos \alpha \sin \beta \) - Coefficient of \( \hat{k} \) is \( c = \sin \alpha \) 3. **Use the formula for the magnitude of a vector**: The magnitude \( |\mathbf{v}| \) of a vector \( \mathbf{v} = a \hat{i} + b \hat{j} + c \hat{k} \) is given by: \[ |\mathbf{v}| = \sqrt{a^2 + b^2 + c^2} \] 4. **Substitute the coefficients into the formula**: \[ |\mathbf{v}| = \sqrt{(\cos \alpha \cos \beta)^2 + (\cos \alpha \sin \beta)^2 + (\sin \alpha)^2} \] 5. **Simplify the expression**: - Calculate \( a^2 + b^2 \): \[ a^2 + b^2 = \cos^2 \alpha \cos^2 \beta + \cos^2 \alpha \sin^2 \beta \] - Factor out \( \cos^2 \alpha \): \[ = \cos^2 \alpha (\cos^2 \beta + \sin^2 \beta) \] - Using the Pythagorean identity \( \cos^2 \beta + \sin^2 \beta = 1 \): \[ = \cos^2 \alpha \cdot 1 = \cos^2 \alpha \] 6. **Combine with \( c^2 \)**: \[ |\mathbf{v}| = \sqrt{\cos^2 \alpha + \sin^2 \alpha} \] - Again, using the Pythagorean identity \( \cos^2 \alpha + \sin^2 \alpha = 1 \): \[ |\mathbf{v}| = \sqrt{1} = 1 \] 7. **Conclusion**: Since the magnitude of the vector is 1, we conclude that the vector is a unit vector. ### Final Answer: The vector \( \cos \alpha \cos \beta \hat{i} + \cos \alpha \sin \beta \hat{j} + \sin \alpha \hat{k} \) is a **unit vector**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

The vector cosalpha\ cosbeta hat i+cosalpha\ sinbeta hat j+sinalpha hat k is a a.null vector b. unit vector c. constant vector d. none of these

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

Prove that |cosalpha-cosbeta|lt=|alpha-beta|

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

Prove by vector metod the following formula of plane trigonometry cos(alpha-beta)=cosalpha cosbeta+sinalpha sinbeta

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

By geometrical interpretation, prove that (i) sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha (ii) cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta

Assertion : The system of linear equations x+(sinalpha)y+(cosalpha)z=0x+(cosalpha)y+(sinalpha)z=0x-(sinalpha)y-(cos\ alpha)z=0 has a non-trivial solution for only value of alpha lying the interval (0,\ pi) Reason: The equation in\ alpha cosalphas in alpha cosalphasinalpha cosalphasinalphac osalpha-sinalpha-cosalpha|=0 has only one solution lying in the interval (-pi/4,\ pi/4)

intdx/(cosalpha+cosx)

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  2. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  3. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  4. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  5. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  6. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  7. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  8. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |

  9. If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendi...

    Text Solution

    |

  10. The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, ...

    Text Solution

    |

  11. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  12. If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+...

    Text Solution

    |

  13. If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk, then vecaxxvecb is

    Text Solution

    |

  14. If veca,vecb represent the diagonals of a rhombus, then

    Text Solution

    |

  15. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  16. If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,v...

    Text Solution

    |

  17. A vector vecc of magnitude sqrt(7) which is perpendicular to the vecto...

    Text Solution

    |

  18. If veca=hati+hatj,vecb=hati-hatj, then veca.vecb=

    Text Solution

    |

  19. The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=h...

    Text Solution

    |

  20. The volume of the parallelepiped whose edges are veca=2hati-3hatj+4h...

    Text Solution

    |