Home
Class 12
MATHS
If veca and vecb are unit vectors inclin...

If `veca` and `vecb` are unit vectors inclined at an angle `theta`, then the value of `|veca-vecb|` is

A

`2 sin(theta)/(2)`

B

`2sintheta`

C

`2costheta(theta)/(2)`

D

`2costheta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( |\vec{a} - \vec{b}| \) where \( \vec{a} \) and \( \vec{b} \) are unit vectors inclined at an angle \( \theta \), we can follow these steps: ### Step 1: Write the expression for the magnitude We start with the expression for the magnitude: \[ |\vec{a} - \vec{b}| \] ### Step 2: Square the magnitude To simplify the calculation, we square the magnitude: \[ |\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) \] ### Step 3: Expand the dot product Using the properties of the dot product, we expand the expression: \[ |\vec{a} - \vec{b}|^2 = \vec{a} \cdot \vec{a} - 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} \] ### Step 4: Substitute the values for unit vectors Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, we have: \[ \vec{a} \cdot \vec{a} = 1 \quad \text{and} \quad \vec{b} \cdot \vec{b} = 1 \] Thus, we can substitute these values: \[ |\vec{a} - \vec{b}|^2 = 1 - 2 \vec{a} \cdot \vec{b} + 1 \] This simplifies to: \[ |\vec{a} - \vec{b}|^2 = 2 - 2 \vec{a} \cdot \vec{b} \] ### Step 5: Use the dot product formula The dot product of two unit vectors can be expressed in terms of the angle \( \theta \) between them: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) = 1 \cdot 1 \cdot \cos(\theta) = \cos(\theta) \] Substituting this into our equation gives: \[ |\vec{a} - \vec{b}|^2 = 2 - 2 \cos(\theta) \] ### Step 6: Factor out the common term We can factor out the 2: \[ |\vec{a} - \vec{b}|^2 = 2(1 - \cos(\theta)) \] ### Step 7: Apply the half-angle identity Using the trigonometric identity \( 1 - \cos(\theta) = 2 \sin^2\left(\frac{\theta}{2}\right) \), we can rewrite the equation: \[ |\vec{a} - \vec{b}|^2 = 2 \cdot 2 \sin^2\left(\frac{\theta}{2}\right) = 4 \sin^2\left(\frac{\theta}{2}\right) \] ### Step 8: Take the square root Finally, we take the square root to find the magnitude: \[ |\vec{a} - \vec{b}| = \sqrt{4 \sin^2\left(\frac{\theta}{2}\right)} = 2 \sin\left(\frac{\theta}{2}\right) \] ### Final Answer Thus, the value of \( |\vec{a} - \vec{b}| \) is: \[ |\vec{a} - \vec{b}| = 2 \sin\left(\frac{\theta}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

Let veca and vecb are unit vectors inclined at an angle alpha to each other , if |veca+vecb| lt 1 then

If veca and vecb are two unit vectors inclined at an angle pi/3 then { veca xx (vecb+veca xx vecb)} .vecb is equal to (a) -3/4 (b) 1/4 (c) 3/4 (d) 1/2

If veca and vecb are unit vectors and theta is the angle between them then show that |veca-vecb|=2sin.(theta)/(2)

If veca and vecb are unit vectors inclined to x-axis at angle 30^(@) and 120^(@) then |veca +vecb| equals

If veca and vecb are unit vectors, then find the greatest value of |veca+vecb|+ |veca-vecb| .

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is a unit vector and equal to the sum of veca and vecb the magnitude of difference between veca and vecb is (A) 1 (B) sqrt(2) (C) sqrt(3) (D) 1/sqrt(2)

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If |vecc|=4, theta = cos^-1(1/4) and vecc=2vecb+tveca, then t= (A) 3,-4 (B) -3,4 (C) 3,4 (D) -3,-4

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  2. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  3. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  4. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  5. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  6. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  7. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  8. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |

  9. If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendi...

    Text Solution

    |

  10. The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, ...

    Text Solution

    |

  11. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  12. If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+...

    Text Solution

    |

  13. If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk, then vecaxxvecb is

    Text Solution

    |

  14. If veca,vecb represent the diagonals of a rhombus, then

    Text Solution

    |

  15. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  16. If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,v...

    Text Solution

    |

  17. A vector vecc of magnitude sqrt(7) which is perpendicular to the vecto...

    Text Solution

    |

  18. If veca=hati+hatj,vecb=hati-hatj, then veca.vecb=

    Text Solution

    |

  19. The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=h...

    Text Solution

    |

  20. The volume of the parallelepiped whose edges are veca=2hati-3hatj+4h...

    Text Solution

    |