Home
Class 12
MATHS
If theta is the angle between the vector...

If `theta` is the angle between the vectors `2hati-2hatj+4hatk` and `3hati+hatj+2hatk`, then `sin theta` is equal to

A

`(2)/(3)`

B

`(2)/(sqrt(7))`

C

`(sqrt(2))/(7)`

D

`sqrt((2)/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \sin \theta \) where \( \theta \) is the angle between the vectors \( \mathbf{A} = 2\hat{i} - 2\hat{j} + 4\hat{k} \) and \( \mathbf{B} = 3\hat{i} + \hat{j} + 2\hat{k} \), we will use the formula: \[ \sin \theta = \frac{|\mathbf{A} \times \mathbf{B}|}{|\mathbf{A}| |\mathbf{B}|} \] ### Step 1: Calculate the cross product \( \mathbf{A} \times \mathbf{B} \) The cross product can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of \( \mathbf{A} \) and \( \mathbf{B} \): \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & 4 \\ 3 & 1 & 2 \end{vmatrix} \] Calculating this determinant: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} -2 & 4 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -2 \\ 3 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -2 & 4 \\ 1 & 2 \end{vmatrix} = (-2)(2) - (4)(1) = -4 - 4 = -8 \) 2. \( \begin{vmatrix} 2 & 4 \\ 3 & 2 \end{vmatrix} = (2)(2) - (4)(3) = 4 - 12 = -8 \) 3. \( \begin{vmatrix} 2 & -2 \\ 3 & 1 \end{vmatrix} = (2)(1) - (-2)(3) = 2 + 6 = 8 \) Putting it all together: \[ \mathbf{A} \times \mathbf{B} = -8\hat{i} + 8\hat{j} + 8\hat{k} \] ### Step 2: Calculate the magnitude of the cross product \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{(-8)^2 + 8^2 + 8^2} = \sqrt{64 + 64 + 64} = \sqrt{192} = 8\sqrt{3} \] ### Step 3: Calculate the magnitudes of \( \mathbf{A} \) and \( \mathbf{B} \) 1. For \( \mathbf{A} \): \[ |\mathbf{A}| = \sqrt{2^2 + (-2)^2 + 4^2} = \sqrt{4 + 4 + 16} = \sqrt{24} = 2\sqrt{6} \] 2. For \( \mathbf{B} \): \[ |\mathbf{B}| = \sqrt{3^2 + 1^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14} \] ### Step 4: Substitute into the sine formula Now substitute the values into the sine formula: \[ \sin \theta = \frac{|\mathbf{A} \times \mathbf{B}|}{|\mathbf{A}| |\mathbf{B}|} = \frac{8\sqrt{3}}{(2\sqrt{6})(\sqrt{14})} \] Calculating the denominator: \[ |\mathbf{A}| |\mathbf{B}| = 2\sqrt{6} \cdot \sqrt{14} = 2\sqrt{84} = 2 \cdot 2\sqrt{21} = 4\sqrt{21} \] Thus, \[ \sin \theta = \frac{8\sqrt{3}}{4\sqrt{21}} = \frac{2\sqrt{3}}{\sqrt{21}} \] ### Step 5: Rationalize the denominator To rationalize the denominator: \[ \sin \theta = \frac{2\sqrt{3}}{\sqrt{21}} \cdot \frac{\sqrt{21}}{\sqrt{21}} = \frac{2\sqrt{63}}{21} = \frac{2 \cdot 3\sqrt{7}}{21} = \frac{6\sqrt{7}}{21} = \frac{2\sqrt{7}}{7} \] ### Final Answer Thus, \[ \sin \theta = \frac{2}{\sqrt{7}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 4hati-2hatj+4hatk and 3hati-6hatj-2hatk.

If theta is the angle between the vectors a=2hati+2hatj-hatk and b=6hati-3hatj+2hatk , then

Find the angle between the vectors 2hati-hatj+hatkand3hati+4hatj-hatk .

The angle between the vector 2hati+hatj+hatk and hatj ?

If theta is the angle between two vectors hati-2hatj+3hatk and 3hati-2hatj+hatk , find sin theta

the angle between the vectors (hati+hatj) and (hatj+hatk) is

The sine of the angle between the vector a=3hati+hatj+hatk and b=2hati-2hatj+hatk is

The angle between two vectors -2hati+3hatj+k and hati+2hatj-4hatk is

The angle between two vectors -2hati+3hatj+k and hati+2hatj-4hatk is

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  2. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  3. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  4. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  5. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  6. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  7. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  8. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |

  9. If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendi...

    Text Solution

    |

  10. The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, ...

    Text Solution

    |

  11. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  12. If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+...

    Text Solution

    |

  13. If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk, then vecaxxvecb is

    Text Solution

    |

  14. If veca,vecb represent the diagonals of a rhombus, then

    Text Solution

    |

  15. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  16. If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,v...

    Text Solution

    |

  17. A vector vecc of magnitude sqrt(7) which is perpendicular to the vecto...

    Text Solution

    |

  18. If veca=hati+hatj,vecb=hati-hatj, then veca.vecb=

    Text Solution

    |

  19. The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=h...

    Text Solution

    |

  20. The volume of the parallelepiped whose edges are veca=2hati-3hatj+4h...

    Text Solution

    |