Home
Class 12
MATHS
If vecu=veca-vecb, vecv=veca+vecb and |v...

If `vecu=veca-vecb`, `vecv=veca+vecb` and `|veca|=|vecb|=2`, then `|vecuxxvecv|` is equal to

A

`2sqrt(16-(veca.vecb)^(2))`

B

`sqrt([16-(veca.vecb)^(2)])`

C

`2sqrt([4-(veca.vecb)^(2)])`

D

`[4-(veca.vecb)^(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the cross product of two vectors defined as follows: 1. **Given:** - \(\vec{u} = \vec{a} - \vec{b}\) - \(\vec{v} = \vec{a} + \vec{b}\) - \(|\vec{a}| = |\vec{b}| = 2\) 2. **Find:** - \(|\vec{u} \times \vec{v}|\) ### Step-by-Step Solution: **Step 1: Write the expression for the cross product.** \[ \vec{u} \times \vec{v} = (\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) \] **Step 2: Use the distributive property of the cross product.** \[ \vec{u} \times \vec{v} = \vec{a} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} - \vec{b} \times \vec{b} \] **Step 3: Simplify using properties of the cross product.** - Recall that \(\vec{a} \times \vec{a} = \vec{0}\) and \(\vec{b} \times \vec{b} = \vec{0}\). - Also, \(\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})\). Thus, we have: \[ \vec{u} \times \vec{v} = 0 + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} + 0 = \vec{a} \times \vec{b} + \vec{a} \times \vec{b} = 2(\vec{a} \times \vec{b}) \] **Step 4: Find the magnitude of the cross product.** \[ |\vec{u} \times \vec{v}| = |2(\vec{a} \times \vec{b})| = 2 |\vec{a} \times \vec{b}| \] **Step 5: Calculate \(|\vec{a} \times \vec{b}|\).** Using the formula for the magnitude of the cross product: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). Given \(|\vec{a}| = |\vec{b}| = 2\): \[ |\vec{a} \times \vec{b}| = 2 \cdot 2 \cdot \sin \theta = 4 \sin \theta \] **Step 6: Substitute back into the magnitude expression.** \[ |\vec{u} \times \vec{v}| = 2 |\vec{a} \times \vec{b}| = 2 \cdot 4 \sin \theta = 8 \sin \theta \] **Step 7: Relate to the dot product.** Using the relation between dot product and angle: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = 2 \cdot 2 \cdot \cos \theta = 4 \cos \theta \] Thus, \[ \cos^2 \theta = \left(\frac{\vec{a} \cdot \vec{b}}{4}\right)^2 \] **Step 8: Substitute into the expression for \(|\vec{u} \times \vec{v}|\).** Using the identity \(\sin^2 \theta = 1 - \cos^2 \theta\): \[ |\vec{u} \times \vec{v}| = 8 \sqrt{1 - \left(\frac{\vec{a} \cdot \vec{b}}{4}\right)^2} \] **Final Result:** Thus, we can summarize the result: \[ |\vec{u} \times \vec{v}| = 2 \sqrt{16 - (\vec{a} \cdot \vec{b})^2} \] ### Conclusion: The magnitude of \(|\vec{u} \times \vec{v}|\) is equal to \(2 \sqrt{16 - (\vec{a} \cdot \vec{b})^2}\).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If |vecaxxvecb|=2,|veca.vecb|=2 , then |veca|^(2)|vecb|^(2) is equal to

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If |vecaxxvecb|^(2)+|veca.vecb|^(2)=144and|veca|=4,"then "|vecb| is equal to ……..

If |vecaxxvecb|^(2)+(veca.vecb)^(2)=144and|veca|=4,"then "|vecb| is equal to ……..

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  2. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  3. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  4. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  5. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  6. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  7. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  8. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |

  9. If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendi...

    Text Solution

    |

  10. The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, ...

    Text Solution

    |

  11. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  12. If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+...

    Text Solution

    |

  13. If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk, then vecaxxvecb is

    Text Solution

    |

  14. If veca,vecb represent the diagonals of a rhombus, then

    Text Solution

    |

  15. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  16. If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,v...

    Text Solution

    |

  17. A vector vecc of magnitude sqrt(7) which is perpendicular to the vecto...

    Text Solution

    |

  18. If veca=hati+hatj,vecb=hati-hatj, then veca.vecb=

    Text Solution

    |

  19. The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=h...

    Text Solution

    |

  20. The volume of the parallelepiped whose edges are veca=2hati-3hatj+4h...

    Text Solution

    |