Home
Class 12
MATHS
A vector vecc of magnitude sqrt(7) which...

A vector `vecc` of magnitude `sqrt(7)` which is perpendicular to the vector `veca=2hatj-hatk` and `vecb=-hati+2hatj-3hatk` and makes an obtuse angle with the y-axis is given by

A

(a)`((-4)/(sqrt(3)),(-1)/(sqrt(3)),(-2)/(sqrt(3)))`

B

(b)`((-4)/(sqrt(3)),(-1)/(sqrt(3)),(2)/(sqrt(3)))`

C

(c)`((4)/(sqrt(3)),(-1)/(sqrt(3)),(2)/(sqrt(3)))`

D

(d)Both (2) & (3)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector \( \vec{c} \) of magnitude \( \sqrt{7} \) that is perpendicular to the vectors \( \vec{a} = 2\hat{j} - \hat{k} \) and \( \vec{b} = -\hat{i} + 2\hat{j} - 3\hat{k} \), and makes an obtuse angle with the y-axis. ### Step 1: Find the cross product of \( \vec{a} \) and \( \vec{b} \) The vector \( \vec{c} \) must be perpendicular to both \( \vec{a} \) and \( \vec{b} \). We can find a vector that is perpendicular to both by calculating the cross product \( \vec{a} \times \vec{b} \). \[ \vec{a} = 0\hat{i} + 2\hat{j} - 1\hat{k} \] \[ \vec{b} = -1\hat{i} + 2\hat{j} - 3\hat{k} \] The cross product \( \vec{a} \times \vec{b} \) can be calculated using the determinant of a matrix: \[ \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -1 \\ -1 & 2 & -3 \end{vmatrix} \] Calculating the determinant: \[ \vec{c} = \hat{i} \begin{vmatrix} 2 & -1 \\ 2 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & -1 \\ -1 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 2 \\ -1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 2 & -1 \\ 2 & -3 \end{vmatrix} = (2)(-3) - (2)(-1) = -6 + 2 = -4 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 0 & -1 \\ -1 & -3 \end{vmatrix} = (0)(-3) - (-1)(-1) = 0 - 1 = -1 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 0 & 2 \\ -1 & 2 \end{vmatrix} = (0)(2) - (2)(-1) = 0 + 2 = 2 \] Putting it all together: \[ \vec{c} = -4\hat{i} + 1\hat{j} + 2\hat{k} \] ### Step 2: Normalize \( \vec{c} \) to find the direction Now we need to find the unit vector in the direction of \( \vec{c} \): \[ |\vec{c}| = \sqrt{(-4)^2 + 1^2 + 2^2} = \sqrt{16 + 1 + 4} = \sqrt{21} \] The unit vector \( \hat{c} \) in the direction of \( \vec{c} \) is: \[ \hat{c} = \frac{-4\hat{i} + 1\hat{j} + 2\hat{k}}{\sqrt{21}} \] ### Step 3: Scale \( \hat{c} \) to have a magnitude of \( \sqrt{7} \) To get \( \vec{c} \) with a magnitude of \( \sqrt{7} \), we scale the unit vector: \[ \vec{c} = \sqrt{7} \cdot \hat{c} = \sqrt{7} \cdot \frac{-4\hat{i} + 1\hat{j} + 2\hat{k}}{\sqrt{21}} = \frac{-4\sqrt{7}}{\sqrt{21}}\hat{i} + \frac{\sqrt{7}}{\sqrt{21}}\hat{j} + \frac{2\sqrt{7}}{\sqrt{21}}\hat{k} \] ### Step 4: Check the angle with the y-axis To ensure that \( \vec{c} \) makes an obtuse angle with the y-axis, we check the dot product with \( \hat{j} \): \[ \vec{c} \cdot \hat{j} = \frac{\sqrt{7}}{\sqrt{21}} \] For an obtuse angle, this dot product must be negative. Since \( \frac{\sqrt{7}}{\sqrt{21}} > 0 \), we need to take the negative of \( \vec{c} \): \[ \vec{c} = \frac{4\sqrt{7}}{\sqrt{21}}\hat{i} - \frac{\sqrt{7}}{\sqrt{21}}\hat{j} - \frac{2\sqrt{7}}{\sqrt{21}}\hat{k} \] ### Final Answer Thus, the vector \( \vec{c} \) that meets all the conditions is: \[ \vec{c} = \frac{4\sqrt{7}}{\sqrt{21}}\hat{i} - \frac{\sqrt{7}}{\sqrt{21}}\hat{j} - \frac{2\sqrt{7}}{\sqrt{21}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Find a vector of magnitude 9 units and perpendicular to the vectors veca=4hati-hatj+hatk and vecb= -2hati+hatj-2hatk .

Find the unit vector perpendicular to the vectors vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

Find the vector of magnitude 3, bisecting the angle between the vectors veca=2hati+hatj-hatk and vecb=hati-2hatj+hatk .

Find a vector perpendicular to vector vecA=(hati+2hatj-3hatk) as well as vecB=(hati+hatj-hatk)

Find a vector whose magnitude is 3 units and which is perpendicular to the vectors veca and vecb where veca=3hati+hatj-4hatk and vecb=6hati+hatj-2hatk

Projection of the vector veca=2hati+3hatj-2hatk on the vector vecb=hati+2hatj+3hatk is

The vector vecB=5hati+2hatj-Shatk is perpendicular to the vector vecA=3hati+hatj+2hatk if S=

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  2. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  3. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  4. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  5. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  6. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  7. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  8. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |

  9. If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendi...

    Text Solution

    |

  10. The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, ...

    Text Solution

    |

  11. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  12. If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+...

    Text Solution

    |

  13. If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk, then vecaxxvecb is

    Text Solution

    |

  14. If veca,vecb represent the diagonals of a rhombus, then

    Text Solution

    |

  15. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  16. If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,v...

    Text Solution

    |

  17. A vector vecc of magnitude sqrt(7) which is perpendicular to the vecto...

    Text Solution

    |

  18. If veca=hati+hatj,vecb=hati-hatj, then veca.vecb=

    Text Solution

    |

  19. The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=h...

    Text Solution

    |

  20. The volume of the parallelepiped whose edges are veca=2hati-3hatj+4h...

    Text Solution

    |