Home
Class 12
MATHS
The volume of the parallelepiped whose e...

The volume of the parallelepiped whose edges are
`veca=2hati-3hatj+4hatk, vecb=hati+2hatj-hatk` and `vecc=2hati-hatj+2hatk` is

A

`-2` cubic unit

B

2 cubic unit

C

1 cubic unit

D

4 cubic unit

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the vectors **a**, **b**, and **c**, we can use the formula for the volume, which is given by the absolute value of the scalar triple product of the vectors. The scalar triple product can be calculated using the determinant of a matrix formed by the vectors. ### Step-by-Step Solution: 1. **Identify the Vectors:** Given vectors are: \[ \vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} - \hat{k} \] \[ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} \] 2. **Set Up the Determinant:** The volume \( V \) of the parallelepiped can be calculated using the determinant: \[ V = |\det(\vec{a}, \vec{b}, \vec{c})| \] This determinant can be set up as follows: \[ \det\begin{pmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 2 & -1 & 2 \end{pmatrix} \] 3. **Calculate the Determinant:** Using the formula for the determinant of a 3x3 matrix: \[ \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: \[ \det = 2 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} - (-3) \begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \] Now calculating the 2x2 determinants: \[ \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = (2)(2) - (-1)(-1) = 4 - 1 = 3 \] \[ \begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix} = (1)(2) - (-1)(2) = 2 + 2 = 4 \] \[ \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (2)(2) = -1 - 4 = -5 \] Plugging these values back into the determinant: \[ \det = 2(3) + 3(4) + 4(-5) = 6 + 12 - 20 = -2 \] 4. **Calculate the Volume:** Since volume cannot be negative, we take the absolute value: \[ V = |\det| = |-2| = 2 \] 5. **Final Answer:** The volume of the parallelepiped is \( 2 \) cubic units.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the parallelopiped whose edges are represented by a=2hati-3hatj+4hatk,b=hati+2hatj-hatk and c=3hati-hatj+2hatk .

if the volume of a parallelpiped whose adjacent egges are veca=2hati+3hatj+4hatk,vecb=hati+alphahatj+2hatk, vecc=veci+2hatj + alphahatk is 15 then find of alpha if (alpha gt 0)

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Find the volume of a parallelopiped whose edges are represented by the vectors: veca =2hati-3hatj-4hatk, vecb=hati+2hatj-2hatk, and vecc=3hati+hatj+2hatk .

Find the volume of the parallelepiped with co-terminous edges 2 hati + hatj - hatk, hati + 2 hatj + 3 hatk and - 3 hati - hatj + hatk

Find th altitude of a parallelepiped whose three coterminous edges are vectors vecA=hati+hatj+hatk,vecB=2hati+4hatj-hatkand vecC=hati+hatj+3hatk "with" vecA and vecB as the sides of the base of the parallelepiped .

Find the projection of veca=2hati-hatj+hatk and vecb=hati-2hatj+hatk.

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  2. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  3. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  4. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  5. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  6. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  7. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  8. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |

  9. If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendi...

    Text Solution

    |

  10. The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, ...

    Text Solution

    |

  11. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  12. If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+...

    Text Solution

    |

  13. If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk, then vecaxxvecb is

    Text Solution

    |

  14. If veca,vecb represent the diagonals of a rhombus, then

    Text Solution

    |

  15. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  16. If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,v...

    Text Solution

    |

  17. A vector vecc of magnitude sqrt(7) which is perpendicular to the vecto...

    Text Solution

    |

  18. If veca=hati+hatj,vecb=hati-hatj, then veca.vecb=

    Text Solution

    |

  19. The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=h...

    Text Solution

    |

  20. The volume of the parallelepiped whose edges are veca=2hati-3hatj+4h...

    Text Solution

    |