Home
Class 12
MATHS
Let veca,vecb , vecc are three vectors o...

Let `veca,vecb , vecc` are three vectors of which every pair is non collinear , and the vectors `veca+3vecb` and `2vecb+vecc` are collinear with `vecc` are `veca` respectively. If `vecb.vecb=1`, then find `|2veca+3vecc|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \( |2\vec{a} + 3\vec{c}| \) given the conditions about the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \). ### Step-by-step Solution: 1. **Understanding the Given Conditions**: - We know that \( \vec{a} + 3\vec{b} \) is collinear with \( \vec{c} \). - We also know that \( 2\vec{b} + \vec{c} \) is collinear with \( \vec{a} \). - Additionally, we are given that \( \vec{b} \cdot \vec{b} = 1 \). 2. **Expressing Collinearity**: - Since \( \vec{a} + 3\vec{b} \) is collinear with \( \vec{c} \), we can write: \[ \vec{a} + 3\vec{b} = \lambda \vec{c} \quad (1) \] for some scalar \( \lambda \). - Similarly, since \( 2\vec{b} + \vec{c} \) is collinear with \( \vec{a} \), we can write: \[ 2\vec{b} + \vec{c} = \mu \vec{a} \quad (2) \] for some scalar \( \mu \). 3. **Substituting and Rearranging**: - From equation (1), we can express \( \vec{c} \): \[ \vec{c} = \frac{1}{\lambda} (\vec{a} + 3\vec{b}) \] - From equation (2), we can express \( \vec{c} \) as well: \[ \vec{c} = \mu \vec{a} - 2\vec{b} \] 4. **Equating the Two Expressions for \( \vec{c} \)**: - Setting the two expressions for \( \vec{c} \) equal gives: \[ \frac{1}{\lambda} (\vec{a} + 3\vec{b}) = \mu \vec{a} - 2\vec{b} \] - Rearranging this, we get: \[ \vec{a} + 3\vec{b} = \lambda (\mu \vec{a} - 2\vec{b}) \] 5. **Expanding and Collecting Like Terms**: - Expanding and rearranging leads to: \[ \vec{a} + 3\vec{b} = \lambda \mu \vec{a} - 2\lambda \vec{b} \] - Rearranging gives: \[ (1 - \lambda \mu) \vec{a} + (3 + 2\lambda) \vec{b} = 0 \] 6. **Using Non-Collinearity**: - Since \( \vec{a} \) and \( \vec{b} \) are non-collinear, we can set the coefficients to zero: \[ 1 - \lambda \mu = 0 \quad \text{and} \quad 3 + 2\lambda = 0 \] 7. **Solving for \( \lambda \) and \( \mu \)**: - From \( 3 + 2\lambda = 0 \), we find: \[ \lambda = -\frac{3}{2} \] - Substituting \( \lambda \) into \( 1 - \lambda \mu = 0 \): \[ 1 + \frac{3}{2} \mu = 0 \implies \mu = -\frac{2}{3} \] 8. **Finding \( 2\vec{a} + 3\vec{c} \)**: - Substitute \( \lambda \) back into either expression for \( \vec{c} \): \[ \vec{c} = -\frac{3}{2} \vec{c} + 3\vec{b} \] - Thus, we can find \( 2\vec{a} + 3\vec{c} \): \[ 2\vec{a} + 3\vec{c} = 6\vec{b} \] 9. **Calculating the Magnitude**: - The magnitude is given by: \[ |2\vec{a} + 3\vec{c}| = |6\vec{b}| \] - Since \( \vec{b} \cdot \vec{b} = 1 \), we have \( |\vec{b}| = 1 \). - Therefore: \[ |6\vec{b}| = 6 \cdot |\vec{b}| = 6 \cdot 1 = 6 \] ### Final Answer: \[ |2\vec{a} + 3\vec{c}| = 6 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-H (Multiple True-Flase Type Questions)|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I (Subjective Type Questions)|5 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-F (Matrix-Match Type Questions)|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three vectors of which every pair is non colinear. If the vector veca+vecb and vecb+vecc are collinear with the vector vecc and veca respectively then which one of the following is correct? (A) veca+vecb+vecc is a nul vector (B) veca+vecb+vecc is a unit vector (C) veca+vecb+vecc is a vector of magnitude 2 units (D) veca+vecb+vecc is a vector of magnitude 3 units

veca,vecb and vecc are three non-zero vectors, no two of which are collinear and the vectors veca+vecb is collinear with vecc , vecb+vecc is collinear with veca , then veca+vecb+vecc=

veca, vecb ,vecc are three non zero vectors no two of which are collonear and the vectors veca + vecb be collinear with vecc,vecb+vecc to collinear with veca then veca+vecb+vecc the equal to ? (A) veca (B) vecb (C) vecc (D) None of these

If veca, vecb and vecc are three non-zero vectors, no two of which are collinear, veca +2 vecb is collinear with vecc and vecb + 3 vecc is collinear with veca , then find the value of |veca + 2vecb + 6vecc| .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca,vecb,vecc are three non zero vectors (no two of which are collinear) such that the pairs of vectors (veca+vecb,vecc) and (vecb+vecc,veca) are colliner, then what is the value of veca+vecb+vecc ? (A) veca is parrallel to vecb (B) vecb (C) vecc (D) vec0

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .