Home
Class 12
MATHS
If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc...

If `vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc]=(1)/(8)` and `vecd.(veca+vecb+vecc)=8` then `lambda+mu+t` equals …………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda + \mu + t \) given the equations involving vectors and their scalar triple products. Let's break down the solution step by step. ### Step 1: Write down the expression for vector \( \vec{d} \) We are given: \[ \vec{d} = \lambda (\vec{a} \times \vec{b}) + \mu (\vec{b} \times \vec{c}) + t (\vec{c} \times \vec{a}) \] ### Step 2: Take the dot product of \( \vec{d} \) with \( \vec{a} \) Taking the dot product of both sides with \( \vec{a} \): \[ \vec{d} \cdot \vec{a} = \lambda (\vec{a} \times \vec{b}) \cdot \vec{a} + \mu (\vec{b} \times \vec{c}) \cdot \vec{a} + t (\vec{c} \times \vec{a}) \cdot \vec{a} \] Since \( \vec{a} \times \vec{b} \) and \( \vec{c} \times \vec{a} \) are perpendicular to \( \vec{a} \), their dot products with \( \vec{a} \) will be zero: \[ \vec{d} \cdot \vec{a} = 0 + \mu (\vec{b} \times \vec{c}) \cdot \vec{a} + 0 \] Using the scalar triple product: \[ \vec{d} \cdot \vec{a} = \mu \cdot (\vec{a} \cdot (\vec{b} \times \vec{c})) = \mu \cdot 8 \] Thus, \[ \vec{d} \cdot \vec{a} = \frac{\mu}{8} \] ### Step 3: Take the dot product of \( \vec{d} \) with \( \vec{b} \) Now, we take the dot product of \( \vec{d} \) with \( \vec{b} \): \[ \vec{d} \cdot \vec{b} = \lambda (\vec{a} \times \vec{b}) \cdot \vec{b} + \mu (\vec{b} \times \vec{c}) \cdot \vec{b} + t (\vec{c} \times \vec{a}) \cdot \vec{b} \] Again, \( \vec{a} \times \vec{b} \) and \( \vec{b} \times \vec{c} \) are perpendicular to \( \vec{b} \): \[ \vec{d} \cdot \vec{b} = 0 + 0 + t (\vec{c} \times \vec{a}) \cdot \vec{b} \] Using the scalar triple product: \[ \vec{d} \cdot \vec{b} = t \cdot (\vec{b} \cdot (\vec{c} \times \vec{a})) = t \cdot 8 \] Thus, \[ \vec{d} \cdot \vec{b} = \frac{t}{8} \] ### Step 4: Take the dot product of \( \vec{d} \) with \( \vec{c} \) Next, we take the dot product of \( \vec{d} \) with \( \vec{c} \): \[ \vec{d} \cdot \vec{c} = \lambda (\vec{a} \times \vec{b}) \cdot \vec{c} + \mu (\vec{b} \times \vec{c}) \cdot \vec{c} + t (\vec{c} \times \vec{a}) \cdot \vec{c} \] Again, \( \vec{b} \times \vec{c} \) and \( \vec{c} \times \vec{a} \) are perpendicular to \( \vec{c} \): \[ \vec{d} \cdot \vec{c} = \lambda (\vec{a} \times \vec{b}) \cdot \vec{c} + 0 + 0 \] Using the scalar triple product: \[ \vec{d} \cdot \vec{c} = \lambda \cdot 8 \] Thus, \[ \vec{d} \cdot \vec{c} = \frac{\lambda}{8} \] ### Step 5: Combine the results Now, we have: \[ \vec{d} \cdot \vec{a} = \frac{\mu}{8}, \quad \vec{d} \cdot \vec{b} = \frac{t}{8}, \quad \vec{d} \cdot \vec{c} = \frac{\lambda}{8} \] Adding these results: \[ \vec{d} \cdot \vec{a} + \vec{d} \cdot \vec{b} + \vec{d} \cdot \vec{c} = \frac{\mu + t + \lambda}{8} \] ### Step 6: Use the given condition We are given that: \[ \vec{d} \cdot (\vec{a} + \vec{b} + \vec{c}) = 8 \] Thus, we can equate: \[ \frac{\mu + t + \lambda}{8} = 8 \] Multiplying both sides by 8: \[ \mu + t + \lambda = 64 \] ### Final Answer Thus, the value of \( \lambda + \mu + t \) is: \[ \boxed{64} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-H (Multiple True-Flase Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If [vecbvecc vecd]=24 and (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)+kveca=0 then k is equal to …………….

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is (a)3 (b)2 (c)1 (d)0

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is