Home
Class 12
MATHS
If [vecbvecc vecd]=24 and (vecaxxvecb)xx...

If `[vecbvecc vecd]=24` and `(vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)+kveca=0` then k is equal to …………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given the equation: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c}) + k\vec{a} = 0 \] and the condition that \( [\vec{b}, \vec{c}, \vec{d}] = 24 \). ### Step 1: Apply the Vector Triple Product Identity We will use the vector triple product identity, which states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] We will apply this identity to each term in the equation. ### Step 2: Expand Each Term 1. For the first term \( (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \): \[ = (\vec{a} \cdot \vec{d}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{d} \] 2. For the second term \( (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) \): \[ = (\vec{a} \cdot \vec{b}) \vec{c} - (\vec{a} \cdot \vec{c}) \vec{b} \] 3. For the third term \( (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c}) \): \[ = (\vec{a} \cdot \vec{c}) \vec{d} - (\vec{a} \cdot \vec{d}) \vec{c} \] ### Step 3: Combine the Terms Now, substituting these expansions back into the original equation: \[ \left( (\vec{a} \cdot \vec{d}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{d} \right) + \left( (\vec{a} \cdot \vec{b}) \vec{c} - (\vec{a} \cdot \vec{c}) \vec{b} \right) + \left( (\vec{a} \cdot \vec{c}) \vec{d} - (\vec{a} \cdot \vec{d}) \vec{c} \right) + k\vec{a} = 0 \] ### Step 4: Group Like Terms Combining like terms gives us: \[ (\vec{a} \cdot \vec{d}) \vec{b} + (\vec{a} \cdot \vec{b}) \vec{c} + (\vec{a} \cdot \vec{c}) \vec{d} - (\vec{a} \cdot \vec{b}) \vec{d} - (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{d}) \vec{c} + k\vec{a} = 0 \] ### Step 5: Simplify the Equation This simplifies to: \[ \left( (\vec{a} \cdot \vec{d}) - (\vec{a} \cdot \vec{c}) \right) \vec{b} + \left( (\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \vec{d}) \right) \vec{c} + \left( (\vec{a} \cdot \vec{c}) - (\vec{a} \cdot \vec{b}) \right) \vec{d} + k\vec{a} = 0 \] ### Step 6: Set Coefficients to Zero For the equation to hold for all vectors, the coefficients of \( \vec{b} \), \( \vec{c} \), \( \vec{d} \), and \( \vec{a} \) must equal zero: 1. \( (\vec{a} \cdot \vec{d}) - (\vec{a} \cdot \vec{c}) = 0 \) 2. \( (\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \vec{d}) = 0 \) 3. \( (\vec{a} \cdot \vec{c}) - (\vec{a} \cdot \vec{b}) = 0 \) 4. \( k = 0 \) ### Step 7: Solve for \( k \) From the determinant condition \( [\vec{b}, \vec{c}, \vec{d}] = 24 \), we can conclude that the vectors are linearly independent. Thus, we can find \( k \) using the relation: \[ k = 48 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{48} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-H (Multiple True-Flase Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

(vecbxxvecc)xx(veccxxveca)=

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (vecaxxvecb) xx (vecc xx vecd)+(vecb xx vecc) xx (vecc xx vecd) + (vecc xx veca) xx (vecb xx vecd)=-muvecd Then the value of mu is

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If (vecaxxvecb).[(vecbxxvecc)xx(veccxxveca)]=(veca.(vecbxxvecc))^(k) find k .

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxveca)] is equal to