Home
Class 12
MATHS
If (vecaxxvecb).[(vecbxxvecc)xx(veccxxve...

If `(vecaxxvecb).[(vecbxxvecc)xx(veccxxveca)]=(veca.(vecbxxvecc))^(k)` find `k`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\vec{a} \times \vec{b}) \cdot [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})] = (\vec{a} \cdot (\vec{b} \times \vec{c}))^k\) and find the value of \(k\), we can follow these steps: ### Step 1: Simplify the Left-Hand Side We start with the left-hand side of the equation: \[ (\vec{a} \times \vec{b}) \cdot [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})] \] Using the vector triple product identity, we know that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \(\vec{x} = \vec{b}\), \(\vec{y} = \vec{c}\), and \(\vec{z} = \vec{a}\). Therefore: \[ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] ### Step 2: Substitute Back into the Equation Now we substitute this back into our left-hand side: \[ (\vec{a} \times \vec{b}) \cdot [(\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}] \] Distributing the dot product: \[ (\vec{a} \times \vec{b}) \cdot ((\vec{b} \cdot \vec{a}) \vec{c}) - (\vec{a} \times \vec{b}) \cdot ((\vec{b} \cdot \vec{c}) \vec{a}) \] ### Step 3: Evaluate Each Dot Product The first term: \[ (\vec{a} \times \vec{b}) \cdot ((\vec{b} \cdot \vec{a}) \vec{c}) = (\vec{b} \cdot \vec{a}) ((\vec{a} \times \vec{b}) \cdot \vec{c}) \] The second term: \[ (\vec{a} \times \vec{b}) \cdot ((\vec{b} \cdot \vec{c}) \vec{a}) = (\vec{b} \cdot \vec{c}) ((\vec{a} \times \vec{b}) \cdot \vec{a}) = 0 \] (since \((\vec{a} \times \vec{b}) \cdot \vec{a} = 0\)). Thus, we have: \[ (\vec{a} \times \vec{b}) \cdot [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})] = (\vec{b} \cdot \vec{a}) ((\vec{a} \times \vec{b}) \cdot \vec{c}) \] ### Step 4: Relate to the Right-Hand Side Now, we need to relate this to the right-hand side: \[ (\vec{a} \cdot (\vec{b} \times \vec{c}))^k \] Using the scalar triple product, we know: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = \text{det}(\vec{a}, \vec{b}, \vec{c}) \] Thus, we can express: \[ (\vec{b} \cdot \vec{a}) ((\vec{a} \times \vec{b}) \cdot \vec{c}) = \text{det}(\vec{a}, \vec{b}, \vec{c})^k \] ### Step 5: Determine the Value of \(k\) From the left-hand side, we can see that the expression simplifies to: \[ \text{det}(\vec{a}, \vec{b}, \vec{c})^2 \] Thus, we can equate: \[ \text{det}(\vec{a}, \vec{b}, \vec{c})^2 = \text{det}(\vec{a}, \vec{b}, \vec{c})^k \] This implies that: \[ k = 2 \] ### Final Answer The value of \(k\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-H (Multiple True-Flase Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Show that: (veca+vecb).{(vecb+vecc)xx(vecc+veca)|=2{veca.(vecbxxvecc)}

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that: [vecaxxvecb vecb xx vecc veccxxveca]=[vecavecbvecc]^2

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc]=(1)/(8) and vecd.(veca+vecb+vecc)=8 then lambda+mu+t equals …………

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

If veca, vecb, vecc are three non-coplanar vetors represented by non-current edges of a parallelopiped of volume 4 units, then the value of (veca+vecb).(vecbxxvecc)+(vecb+vecc).(veccxxveca)+(vecc+veca).(vecaxxvecb) , is

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to