Home
Class 12
MATHS
If |{:(p,p^(2),1+p^(3)),(q,p^(2),1+q^(3)...

If `|{:(p,p^(2),1+p^(3)),(q,p^(2),1+q^(3)),(r,r^(2),1+r^(3)):}|=0` and the volume of parallelopiped formed by the vectors `veca=hati+phatj+p^(2)hatk, vecb=hati+qhatj+q^(2)hatk` and `vecc=hati+rhatj+r^(2)hatk` is `5`, find `pqr`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript. ### Step 1: Understanding the Determinant Condition We are given that the determinant of the vectors: \[ \begin{vmatrix} p & p^2 & 1 + p^3 \\ q & p^2 & 1 + q^3 \\ r & r^2 & 1 + r^3 \end{vmatrix} = 0 \] This means that the vectors are coplanar. ### Step 2: Volume of the Parallelepiped The volume of the parallelepiped formed by the vectors: \[ \vec{a} = \hat{i} + p\hat{j} + p^2\hat{k}, \quad \vec{b} = \hat{i} + q\hat{j} + q^2\hat{k}, \quad \vec{c} = \hat{i} + r\hat{j} + r^2\hat{k} \] is given by the determinant: \[ \text{Volume} = \begin{vmatrix} 1 & p & p^2 \\ 1 & q & q^2 \\ 1 & r & r^2 \end{vmatrix} = 5 \] ### Step 3: Calculating the Determinant for Volume Calculating the determinant: \[ \begin{vmatrix} 1 & p & p^2 \\ 1 & q & q^2 \\ 1 & r & r^2 \end{vmatrix} \] Using the formula for the determinant of a 3x3 matrix, we can expand it: \[ = 1 \cdot (q \cdot r^2 - r \cdot q^2) - p \cdot (1 \cdot r^2 - 1 \cdot q^2) + p^2 \cdot (1 \cdot q - 1 \cdot r) \] This simplifies to: \[ = (q - r)(qr - pq) + p^2(q - r) = (q - r)(qr - pq + p^2) \] Setting this equal to 5: \[ (q - r)(qr - pq + p^2) = 5 \] ### Step 4: Analyzing the First Determinant Now we return to the first determinant which we know equals zero: \[ \begin{vmatrix} p & p^2 & 1 + p^3 \\ q & p^2 & 1 + q^3 \\ r & r^2 & 1 + r^3 \end{vmatrix} = 0 \] We can manipulate this determinant to find a relation between \(p\), \(q\), and \(r\). ### Step 5: Simplifying the Determinant By performing row operations and factoring out \(p\), \(q\), and \(r\): \[ = pqr \begin{vmatrix} 1 & 1 & 1 \\ 1 & q & q^2 \\ 1 & r & r^2 \end{vmatrix} + pqr \begin{vmatrix} 1 & 1 & 1 \\ p & p^2 & 1 + p^3 \\ q & q^2 & 1 + q^3 \end{vmatrix} \] This leads to: \[ pqr \cdot \text{(some determinant)} = 0 \] Since \(pqr\) cannot be zero (as it would imply one of \(p\), \(q\), or \(r\) is zero), we conclude that the determinant must equal zero. ### Step 6: Finding \(pqr\) From our earlier calculations, we have: \[ pqr + 5 = 0 \] Thus, \[ pqr = -5 \] ### Final Result The value of \(pqr\) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I (Subjective Type Questions)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Find the volume of a parallelopiped whose edges are represented by the vectors: veca =2hati-3hatj-4hatk, vecb=hati+2hatj-2hatk, and vecc=3hati+hatj+2hatk .

Select CORRECT statement(s) for three vectors veca=-3hati+2hatj-hatk, vecb=hati-3hatj+5hatk and vecc=2hati+hatj-4hatk

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

Find the projection of vecb+vecc on veca where veca=hati+2hatj+hatk, vecb=hati+3hatj+hatk and vecc=hati+hatk .

Projection of the vector veca=2hati+3hatj-2hatk on the vector vecb=hati+2hatj+3hatk is

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk