Home
Class 12
MATHS
sum(r=1)^(2002+(2k-1))cos((2rpi)/7)+isin...

`sum_(r=1)^(2002+(2k-1))cos((2rpi)/7)+isin((2rpi)/7)=0` then the non negative integtral values of k less than 10 may be

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ \sum_{r=1}^{2002 + (2k - 1)} \left( \cos\left(\frac{2r\pi}{7}\right) + i \sin\left(\frac{2r\pi}{7}\right) \right) = 0 \] This can be rewritten using Euler's formula: \[ \sum_{r=1}^{2002 + (2k - 1)} e^{i \frac{2r\pi}{7}} = 0 \] ### Step 1: Identify the sum as a geometric series The expression can be recognized as a geometric series where the first term \( a = e^{i \frac{2\pi}{7}} \) and the common ratio \( r = e^{i \frac{2\pi}{7}} \). The number of terms \( n \) is \( 2002 + (2k - 1) = 2001 + 2k \). The sum of a geometric series is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \] Substituting our values: \[ S = e^{i \frac{2\pi}{7}} \cdot \frac{1 - \left(e^{i \frac{2\pi}{7}}\right)^{2001 + 2k}}{1 - e^{i \frac{2\pi}{7}}} \] ### Step 2: Set the sum equal to zero For the sum to equal zero, the numerator must be zero (since the denominator is non-zero): \[ 1 - \left(e^{i \frac{2\pi}{7}}\right)^{2001 + 2k} = 0 \] This implies: \[ \left(e^{i \frac{2\pi}{7}}\right)^{2001 + 2k} = 1 \] ### Step 3: Analyze the condition for equality to 1 The expression \( e^{i \frac{2\pi}{7}} \) raised to any integer multiple of \( 7 \) will equal \( 1 \). Therefore, we need: \[ \frac{2001 + 2k}{7} = n \quad \text{(where \( n \) is an integer)} \] This implies that: \[ 2001 + 2k = 7n \] ### Step 4: Rearranging the equation Rearranging gives us: \[ 2k = 7n - 2001 \] \[ k = \frac{7n - 2001}{2} \] ### Step 5: Finding integer values for \( k \) For \( k \) to be a non-negative integer, \( 7n - 2001 \) must be non-negative and even. Therefore: 1. \( 7n \geq 2001 \) 2. \( 7n \) must be even. Since \( 2001 \) is odd, \( 7n \) must also be odd. This means \( n \) must be odd. Let \( n = 2m + 1 \) (where \( m \) is a non-negative integer): Substituting gives: \[ 7(2m + 1) - 2001 = 14m + 7 - 2001 = 14m - 1994 \] Thus: \[ k = \frac{14m - 1994}{2} = 7m - 997 \] ### Step 6: Finding values of \( k \) To ensure \( k \) is non-negative: \[ 7m - 997 \geq 0 \implies 7m \geq 997 \implies m \geq \frac{997}{7} \approx 142.43 \] Thus, \( m \) must be at least \( 143 \). ### Step 7: Finding the upper limit for \( k \) Since \( k < 10 \): \[ 7m - 997 < 10 \implies 7m < 1007 \implies m < \frac{1007}{7} \approx 143.86 \] Thus, \( m \) can only take the value \( 143 \). ### Step 8: Calculate \( k \) Substituting \( m = 143 \): \[ k = 7(143) - 997 = 1001 - 997 = 4 \] ### Conclusion The only non-negative integral value of \( k \) less than \( 10 \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-H ( Multiple True-False Type Questions|5 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-I (Subjective Type Questions)|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-F ( Matrix -Match type Question)|7 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

sum_(k=0)^(5)(-1)^(k)2k

The value of sum_(r=1)^(8)(sin((2rpi)/9)+icos((2rpi)/9)) , is

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

sum_(k=1)^6 (sin,(2pik)/7 -icos, (2pik)/7)=?

If [(cos\ (2pi)/7,-sin\ (2pi)/7),(sin\ (2pi)/7,cos\ (2pi)/7)]^k=[(1,0),(0,1)], then the least positive integral value of k , is

Let z_(k)=cos((2kpi)/(10))+isin((2kpi)/(10)) ,k=1,2,…,9. Then match the column

sum_(r=1)^(10)(r+{(r)/(7)}+{(2r)/(7)})= where {x} rarr fractional part function

If A= sum _(r=1)^(3)"cos"(2r pi)/(7) and B=sum_(r=1)^(3)"cos"(2^(r )pi)/(7) , then :

1-sum_(k=1)^9 cos\ (2pik)/10 equals to…..

If (3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi)/(7))=kcos""(pi)/(7) then the value of k is