Home
Class 12
MATHS
Let alpha and beta be the roots of the ...

Let ` alpha and beta` be the roots of the equation ` x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n)` , Show that ` V_(n+1) = pV_(n) -qV_(n-1)` find ` V_(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( V_{n+1} = pV_n - qV_{n-1} \) and then find \( V_5 \). ### Step 1: Understand the Roots Given the quadratic equation: \[ x^2 - px + q = 0 \] Let \( \alpha \) and \( \beta \) be the roots of this equation. By Vieta's formulas, we know: \[ \alpha + \beta = p \quad \text{(sum of roots)} \] \[ \alpha \beta = q \quad \text{(product of roots)} \] ### Step 2: Define \( V_n \) We define: \[ V_n = \alpha^n + \beta^n \] ### Step 3: Prove the Recurrence Relation We need to show that: \[ V_{n+1} = pV_n - qV_{n-1} \] **Left-Hand Side (LHS)**: \[ V_{n+1} = \alpha^{n+1} + \beta^{n+1} \] **Right-Hand Side (RHS)**: Using the definitions of \( V_n \) and \( V_{n-1} \): \[ pV_n = p(\alpha^n + \beta^n) = (\alpha + \beta)(\alpha^n + \beta^n) = \alpha^{n+1} + \beta^{n+1} + \alpha^n \beta + \beta^n \alpha \] \[ qV_{n-1} = q(\alpha^{n-1} + \beta^{n-1}) = \alpha \beta (\alpha^{n-1} + \beta^{n-1}) = \alpha^{n} \beta + \beta^{n} \alpha \] Thus, \[ pV_n - qV_{n-1} = (\alpha^{n+1} + \beta^{n+1} + \alpha^n \beta + \beta^n \alpha) - (\alpha^{n} \beta + \beta^{n} \alpha) \] The terms \( \alpha^n \beta \) and \( \beta^n \alpha \) cancel out, leading to: \[ pV_n - qV_{n-1} = \alpha^{n+1} + \beta^{n+1} = V_{n+1} \] Thus, we have shown that: \[ V_{n+1} = pV_n - qV_{n-1} \] ### Step 4: Calculate \( V_5 \) To find \( V_5 \), we need \( V_4 \) and \( V_3 \). 1. **Calculate \( V_3 \)**: \[ V_3 = pV_2 - qV_1 \] where: \[ V_1 = \alpha + \beta = p \] \[ V_2 = \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = p^2 - 2q \] Thus, \[ V_3 = p(p^2 - 2q) - q(p) = p^3 - 2pq - qp = p^3 - 3pq \] 2. **Calculate \( V_4 \)**: \[ V_4 = pV_3 - qV_2 \] Substituting \( V_3 \) and \( V_2 \): \[ V_4 = p(p^3 - 3pq) - q(p^2 - 2q) \] \[ = p^4 - 3p^2q - qp^2 + 2q^2 = p^4 - 4p^2q + 2q^2 \] 3. **Finally, calculate \( V_5 \)**: \[ V_5 = pV_4 - qV_3 \] Substituting \( V_4 \) and \( V_3 \): \[ V_5 = p(p^4 - 4p^2q + 2q^2) - q(p^3 - 3pq) \] \[ = p^5 - 4p^3q + 2pq^2 - qp^3 + 3q^2p \] \[ = p^5 - 5p^3q + 5pq^2 \] ### Final Result Thus, we have: \[ V_5 = p^5 - 5p^3q + 5pq^2 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-H ( Multiple True-False Type Questions|5 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation px^(2) + qx + 1 = , find alpha^(2) beta + beta^(2)alpha .

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

lf alpha and beta are the roots of the equation x^2-ax + b = 0 and A_n = alpha^n + beta^n , then which of the following is true ?

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

Let alpha and beta be the roots of the equation x^2-6x-2=0 If a_n=alpha^n-beta^n for ngt=0 then find the value of (a_10-2a_8)/(2a_9)

if alpha , beta be roots of equation 375 x^2 -25 x -2 = 0 and s_n = alpha^n + beta^n then lim_(n->oo) (sum_(r=1)^n S_r) = .......

If alpha, beta are roots of equation x^(2)-4x-3=0 and s_(n)=alpha^(n)+beta^(n), n in N then the value of (s_(7)-4s_(6))/s_(5) is

If ""_(alpha)and _(beta) are the roots of equation x^(2)-3x+1=0and a_(n)=alpha^n+beta^(n),ninN then value of (a_(7)+a_(5))/(a_(6))=

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-section-I (Subjective Type Questions)
  1. Ifalpha,betaandgamma are the roots of X^(3)-3X^(2)+3X+7+0, find the va...

    Text Solution

    |

  2. A man walks a distance of 3 units from the origin towards the North-...

    Text Solution

    |

  3. Let z(1) and z(2) be two given complex numbers such that z(1)/z(2) ...

    Text Solution

    |

  4. The locus of the centre of a circle which touches the given circles |z...

    Text Solution

    |

  5. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  6. If |z(1)+z(2)|^(2) = |z(1)|^(2) +|z(2)|^(2) " the " 6/pi amp (z(1)/z(...

    Text Solution

    |

  7. For every real number age 0, find all the complex numbers z that sati...

    Text Solution

    |

  8. Let z1,z2 be complex numbers with |z1|=|z2|=1 prove that |z1+1| +|z2...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V...

    Text Solution

    |

  11. If p,q are roots of the quadratic equation x^(2)-10rx -11s =0 and r,s...

    Text Solution

    |

  12. Solve for x: 4^(x+1.5) + 9^(x+0.5) = 10.6^x.

    Text Solution

    |

  13. Let alpha and beta be the values of x obtained form the equation la...

    Text Solution

    |

  14. The twice of the product of real roots of the equation (2x+3)^(2)- 3|...

    Text Solution

    |

  15. The equation ax^(2)+bx+c=0 and x^(3)-4x^(2)+8x-8=0 have two roots in c...

    Text Solution

    |

  16. If x= 3+ 3^(1//3)+ 3^(2//3) , then the value of the expression x^(3)...

    Text Solution

    |