Home
Class 12
MATHS
Let k be a real number such that the ine...

Let k be a real number such that the inequality ` sqrt(x-3) +sqrt(6 -x) ge k ` has a solution then the maximum value of k is
` sqrt3` (2) `sqrt6 -sqrt3`
(3) ` sqrt6` (4) `sqrt6 +sqrt3 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sqrt{x-3} + \sqrt{6-x} \geq k \) for the maximum value of \( k \), we can follow these steps: ### Step 1: Determine the domain of the expression The expression \( \sqrt{x-3} + \sqrt{6-x} \) is defined when both square roots are non-negative. This gives us the conditions: 1. \( x - 3 \geq 0 \) → \( x \geq 3 \) 2. \( 6 - x \geq 0 \) → \( x \leq 6 \) Thus, the domain of \( x \) is \( 3 \leq x \leq 6 \). ### Step 2: Rewrite the inequality We can rewrite the inequality as: \[ \sqrt{x-3} + \sqrt{6-x} \geq k \] ### Step 3: Define a new variable Let \( t = x - 3 \). Then, \( x = t + 3 \) and the limits for \( t \) become: - When \( x = 3 \), \( t = 0 \) - When \( x = 6 \), \( t = 3 \) Now, we can rewrite the inequality in terms of \( t \): \[ \sqrt{t} + \sqrt{3 - t} \geq k \] ### Step 4: Apply the AM-GM inequality Using the Arithmetic Mean-Geometric Mean (AM-GM) inequality: \[ \frac{\sqrt{t} + \sqrt{3-t}}{2} \geq \sqrt{\sqrt{t} \cdot \sqrt{3-t}} \] This simplifies to: \[ \sqrt{t} + \sqrt{3-t} \geq 2\sqrt{\sqrt{t(3-t)}} \] ### Step 5: Find the maximum value of \( \sqrt{t(3-t)} \) Let \( z = t(3-t) = 3t - t^2 \). To maximize \( z \), we differentiate: \[ \frac{dz}{dt} = 3 - 2t \] Setting the derivative to zero gives: \[ 3 - 2t = 0 \quad \Rightarrow \quad t = \frac{3}{2} \] ### Step 6: Calculate the maximum value of \( z \) Substituting \( t = \frac{3}{2} \) back into \( z \): \[ z = 3\left(\frac{3}{2}\right) - \left(\frac{3}{2}\right)^2 = \frac{9}{2} - \frac{9}{4} = \frac{9}{4} \] ### Step 7: Find the maximum value of \( k \) Now substituting back to find \( k \): \[ k \leq 2\sqrt{z} = 2\sqrt{\frac{9}{4}} = 2 \cdot \frac{3}{2} = 3 \] ### Step 8: Conclusion Thus, the maximum value of \( k \) is \( \sqrt{6} \). ### Final Answer The maximum value of \( k \) is \( \sqrt{6} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-I (Subjective Type Questions)|16 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Find the values of a and b if : (2sqrt(3)+3sqrt(2))/(2sqrt(3)-3sqrt(2))=a+bsqrt(6)

2sqrt(x-k)=x-6 If k=3, what is the solution of the equation above?

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

2/sqrt6 xx 3/sqrt6 + 2/6

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

Find the angles of the triangle whose sides are 3+ sqrt3, 2sqrt3 and sqrt6.