Home
Class 12
MATHS
Expand (2x^(2) + 4y^(2))^(6) using pasca...

Expand `(2x^(2) + 4y^(2))^(6)` using pascals triangle.

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((2x^2 + 4y^2)^6\) using Pascal's Triangle, we will follow these steps: ### Step 1: Identify the coefficients from Pascal's Triangle For \(n = 6\), the coefficients from Pascal's Triangle are: \[ 1, 6, 15, 20, 15, 6, 1 \] ### Step 2: Write the general term of the binomial expansion The general term in the binomial expansion of \((a + b)^n\) is given by: \[ T_k = C(n, k) \cdot a^{n-k} \cdot b^k \] where \(C(n, k)\) is the binomial coefficient. In our case, \(a = 2x^2\), \(b = 4y^2\), and \(n = 6\). Thus, the general term becomes: \[ T_k = C(6, k) \cdot (2x^2)^{6-k} \cdot (4y^2)^k \] ### Step 3: Calculate each term for \(k = 0\) to \(k = 6\) Now we will calculate each term for \(k\) from 0 to 6: 1. **For \(k = 0\)**: \[ T_0 = C(6, 0) \cdot (2x^2)^{6} \cdot (4y^2)^{0} = 1 \cdot (2x^2)^{6} = 64x^{12} \] 2. **For \(k = 1\)**: \[ T_1 = C(6, 1) \cdot (2x^2)^{5} \cdot (4y^2)^{1} = 6 \cdot (2x^2)^{5} \cdot (4y^2) = 6 \cdot 32x^{10} \cdot 4y^2 = 768x^{10}y^2 \] 3. **For \(k = 2\)**: \[ T_2 = C(6, 2) \cdot (2x^2)^{4} \cdot (4y^2)^{2} = 15 \cdot (2x^2)^{4} \cdot (16y^4) = 15 \cdot 16x^8 \cdot 16y^4 = 3840x^8y^4 \] 4. **For \(k = 3\)**: \[ T_3 = C(6, 3) \cdot (2x^2)^{3} \cdot (4y^2)^{3} = 20 \cdot (8x^6) \cdot (64y^6) = 1280x^6y^6 \] 5. **For \(k = 4\)**: \[ T_4 = C(6, 4) \cdot (2x^2)^{2} \cdot (4y^2)^{4} = 15 \cdot (4x^4) \cdot (256y^8) = 9600x^4y^8 \] 6. **For \(k = 5\)**: \[ T_5 = C(6, 5) \cdot (2x^2)^{1} \cdot (4y^2)^{5} = 6 \cdot (2x^2) \cdot (1024y^{10}) = 12288x^2y^{10} \] 7. **For \(k = 6\)**: \[ T_6 = C(6, 6) \cdot (2x^2)^{0} \cdot (4y^2)^{6} = 1 \cdot (4096y^{12}) = 4096y^{12} \] ### Step 4: Combine all the terms Now, we combine all the terms to get the final expanded form: \[ (2x^2 + 4y^2)^6 = 64x^{12} + 768x^{10}y^2 + 3840x^8y^4 + 1280x^6y^6 + 9600x^4y^8 + 12288x^2y^{10} + 4096y^{12} \] ### Final Answer: \[ (2x^2 + 4y^2)^6 = 64x^{12} + 768x^{10}y^2 + 3840x^8y^4 + 1280x^6y^6 + 9600x^4y^8 + 12288x^2y^{10} + 4096y^{12} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Expand (y+x)^2

Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's triangle.

Expand: (2x + 3y - 4z)^(2)

Expand (3x-2y)^(4)

Expand : (2x- y + 2)^(3)

Expand (3x-2y)^(4) .

Expand: (x-2y+2)^(2)

Expand: (x+y- z)^(2)

Expand (x-3y+(z)/(2))^(2) .

Expand: ((x^(2))/(2)-(y^(2))/(3))^(6)

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Try Yourself
  1. What is the last entry of any row of pascle's triangle?

    Text Solution

    |

  2. What is the 6th sicth entry in row 5 of pascle's triangle?

    Text Solution

    |

  3. Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's trian...

    Text Solution

    |

  4. Expand (2x^(2) + 4y^(2))^(6) using pascals triangle.

    Text Solution

    |

  5. Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x)^(4) using binomial theorem.

    Text Solution

    |

  6. Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

    Text Solution

    |

  7. Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

    Text Solution

    |

  8. Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

    Text Solution

    |

  9. Using bionomial theorem, show that (9^(n)-8n-1) is always divisible by...

    Text Solution

    |

  10. With the help of bionomial expansion, show that (4^(n)-3n) is always l...

    Text Solution

    |

  11. Find (1+x)^(4) + (1-x)^(4). Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(...

    Text Solution

    |

  12. Find (1+x)^(6) - (1-x)^(6). Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(...

    Text Solution

    |

  13. Find the fifth expansion of (a/3-3b)^(7)

    Text Solution

    |

  14. Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

    Text Solution

    |

  15. Write down the general term in the expansion of (x^(2)-y^(3))^6. (ii...

    Text Solution

    |

  16. Find the middle term in the expansion of (1+3x+3x^(2)+x^(3))^(2n)

    Text Solution

    |

  17. If in the expansion of (1+x)^(15), the coefficients of (r+3)^(t h)a n ...

    Text Solution

    |

  18. Evaluate the following: \ (x+sqrt(x^2-1))^6+(x-sqrt(x^2-1))^6

    Text Solution

    |

  19. if (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a++.^(n)C(2)a^(2)+ . . .+.^(n)C(n)a^(n...

    Text Solution

    |

  20. If (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a+.^(n)C(2)a^(2)+ . . +.^(n)C(n)a^(n),...

    Text Solution

    |