Home
Class 12
MATHS
Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x...

Expand (i) `(x+1/x)^(7)` , (ii) `(x^(2)+2/x)^(4)` using binomial theorem.

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expressions using the Binomial Theorem, we will follow the general formula for binomial expansion, which states: \[ (a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r \] where \(\binom{n}{r}\) is the binomial coefficient, calculated as \(\frac{n!}{r!(n-r)!}\). ### Part (i): Expand \((x + \frac{1}{x})^7\) 1. **Identify \(a\), \(b\), and \(n\)**: - Here, \(a = x\), \(b = \frac{1}{x}\), and \(n = 7\). 2. **Write the expansion**: \[ (x + \frac{1}{x})^7 = \sum_{r=0}^{7} \binom{7}{r} x^{7-r} \left(\frac{1}{x}\right)^r \] 3. **Calculate each term**: - For \(r = 0\): \[ \binom{7}{0} x^{7-0} \left(\frac{1}{x}\right)^0 = 1 \cdot x^7 \cdot 1 = x^7 \] - For \(r = 1\): \[ \binom{7}{1} x^{7-1} \left(\frac{1}{x}\right)^1 = 7 \cdot x^6 \cdot \frac{1}{x} = 7x^5 \] - For \(r = 2\): \[ \binom{7}{2} x^{7-2} \left(\frac{1}{x}\right)^2 = 21 \cdot x^5 \cdot \frac{1}{x^2} = 21x^3 \] - For \(r = 3\): \[ \binom{7}{3} x^{7-3} \left(\frac{1}{x}\right)^3 = 35 \cdot x^4 \cdot \frac{1}{x^3} = 35x \] - For \(r = 4\): \[ \binom{7}{4} x^{7-4} \left(\frac{1}{x}\right)^4 = 35 \cdot x^3 \cdot \frac{1}{x^4} = \frac{35}{x} \] - For \(r = 5\): \[ \binom{7}{5} x^{7-5} \left(\frac{1}{x}\right)^5 = 21 \cdot x^2 \cdot \frac{1}{x^5} = \frac{21}{x^3} \] - For \(r = 6\): \[ \binom{7}{6} x^{7-6} \left(\frac{1}{x}\right)^6 = 7 \cdot x^1 \cdot \frac{1}{x^6} = \frac{7}{x^5} \] - For \(r = 7\): \[ \binom{7}{7} x^{7-7} \left(\frac{1}{x}\right)^7 = 1 \cdot 1 \cdot \frac{1}{x^7} = \frac{1}{x^7} \] 4. **Combine all terms**: \[ (x + \frac{1}{x})^7 = x^7 + 7x^5 + 21x^3 + 35x + \frac{35}{x} + \frac{21}{x^3} + \frac{7}{x^5} + \frac{1}{x^7} \] ### Part (ii): Expand \((x^2 + \frac{2}{x})^4\) 1. **Identify \(a\), \(b\), and \(n\)**: - Here, \(a = x^2\), \(b = \frac{2}{x}\), and \(n = 4\). 2. **Write the expansion**: \[ (x^2 + \frac{2}{x})^4 = \sum_{r=0}^{4} \binom{4}{r} (x^2)^{4-r} \left(\frac{2}{x}\right)^r \] 3. **Calculate each term**: - For \(r = 0\): \[ \binom{4}{0} (x^2)^{4-0} \left(\frac{2}{x}\right)^0 = 1 \cdot x^8 \cdot 1 = x^8 \] - For \(r = 1\): \[ \binom{4}{1} (x^2)^{4-1} \left(\frac{2}{x}\right)^1 = 4 \cdot x^6 \cdot \frac{2}{x} = 8x^5 \] - For \(r = 2\): \[ \binom{4}{2} (x^2)^{4-2} \left(\frac{2}{x}\right)^2 = 6 \cdot x^4 \cdot \frac{4}{x^2} = 24x^2 \] - For \(r = 3\): \[ \binom{4}{3} (x^2)^{4-3} \left(\frac{2}{x}\right)^3 = 4 \cdot x^2 \cdot \frac{8}{x^3} = \frac{32}{x} \] - For \(r = 4\): \[ \binom{4}{4} (x^2)^{4-4} \left(\frac{2}{x}\right)^4 = 1 \cdot 1 \cdot \frac{16}{x^4} = \frac{16}{x^4} \] 4. **Combine all terms**: \[ (x^2 + \frac{2}{x})^4 = x^8 + 8x^5 + 24x^2 + \frac{32}{x} + \frac{16}{x^4} \] ### Final Answers: 1. \((x + \frac{1}{x})^7 = x^7 + 7x^5 + 21x^3 + 35x + \frac{35}{x} + \frac{21}{x^3} + \frac{7}{x^5} + \frac{1}{x^7}\) 2. \((x^2 + \frac{2}{x})^4 = x^8 + 8x^5 + 24x^2 + \frac{32}{x} + \frac{16}{x^4}\)
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's triangle.

Expand (2x-3y)^4 by binomial theorem.

Expand : (i) (5-3y-2)^(2) (ii) (x-(1)/(x)+5)^(2)

Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

Expand (x^2+2a)^5 by binomial theorem.

Expand |(7x,6), (2x, 1)|

Expand : (i) (2x + (1)/( 2x))^2

Expand | (7x, 4), (x, 1)|

Expand (2a - (3)/(b))^(5) by binomial theorem

Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Try Yourself
  1. What is the last entry of any row of pascle's triangle?

    Text Solution

    |

  2. What is the 6th sicth entry in row 5 of pascle's triangle?

    Text Solution

    |

  3. Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's trian...

    Text Solution

    |

  4. Expand (2x^(2) + 4y^(2))^(6) using pascals triangle.

    Text Solution

    |

  5. Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x)^(4) using binomial theorem.

    Text Solution

    |

  6. Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

    Text Solution

    |

  7. Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

    Text Solution

    |

  8. Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

    Text Solution

    |

  9. Using bionomial theorem, show that (9^(n)-8n-1) is always divisible by...

    Text Solution

    |

  10. With the help of bionomial expansion, show that (4^(n)-3n) is always l...

    Text Solution

    |

  11. Find (1+x)^(4) + (1-x)^(4). Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(...

    Text Solution

    |

  12. Find (1+x)^(6) - (1-x)^(6). Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(...

    Text Solution

    |

  13. Find the fifth expansion of (a/3-3b)^(7)

    Text Solution

    |

  14. Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

    Text Solution

    |

  15. Write down the general term in the expansion of (x^(2)-y^(3))^6. (ii...

    Text Solution

    |

  16. Find the middle term in the expansion of (1+3x+3x^(2)+x^(3))^(2n)

    Text Solution

    |

  17. If in the expansion of (1+x)^(15), the coefficients of (r+3)^(t h)a n ...

    Text Solution

    |

  18. Evaluate the following: \ (x+sqrt(x^2-1))^6+(x-sqrt(x^2-1))^6

    Text Solution

    |

  19. if (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a++.^(n)C(2)a^(2)+ . . .+.^(n)C(n)a^(n...

    Text Solution

    |

  20. If (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a+.^(n)C(2)a^(2)+ . . +.^(n)C(n)a^(n),...

    Text Solution

    |