Home
Class 12
MATHS
Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) ...

Expand (i) `((2x)/3-(3)/(2x))^(6)` , (ii) `(2/x-x/2)^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems using the Binomial Theorem, we will expand the expressions step by step. ### Part (i): Expand \(\left(\frac{2x}{3} - \frac{3}{2x}\right)^{6}\) 1. **Identify the terms**: Let \( a = \frac{2x}{3} \) and \( b = -\frac{3}{2x} \). The expression can be rewritten as \( (a + b)^6 \). 2. **Use the Binomial Theorem**: The Binomial Theorem states: \[ (a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^{r} \] Here, \( n = 6 \). 3. **Calculate each term**: - **First term**: \( T_0 = \binom{6}{0} a^6 b^0 = 1 \cdot \left(\frac{2x}{3}\right)^6 \cdot 1 = \frac{64x^6}{729} \) - **Second term**: \( T_1 = \binom{6}{1} a^5 b^1 = 6 \cdot \left(\frac{2x}{3}\right)^5 \cdot \left(-\frac{3}{2x}\right) = -\frac{6 \cdot 32x^5 \cdot 3}{243} = -\frac{576x^4}{243} \) - **Third term**: \( T_2 = \binom{6}{2} a^4 b^2 = 15 \cdot \left(\frac{2x}{3}\right)^4 \cdot \left(-\frac{3}{2x}\right)^2 = 15 \cdot \frac{16x^4}{81} \cdot \frac{9}{4} = \frac{240x^4}{81} \) - **Fourth term**: \( T_3 = \binom{6}{3} a^3 b^3 = 20 \cdot \left(\frac{2x}{3}\right)^3 \cdot \left(-\frac{3}{2x}\right)^3 = -\frac{540x^3}{27} = -20x^3 \) - **Fifth term**: \( T_4 = \binom{6}{4} a^2 b^4 = 15 \cdot \left(\frac{2x}{3}\right)^2 \cdot \left(-\frac{3}{2x}\right)^4 = \frac{15 \cdot 4x^2 \cdot 81}{16} = \frac{2430x^2}{16} \) - **Sixth term**: \( T_5 = \binom{6}{5} a^1 b^5 = 6 \cdot \left(\frac{2x}{3}\right)^1 \cdot \left(-\frac{3}{2x}\right)^5 = -\frac{6 \cdot 2x \cdot 243}{243 \cdot 32} = -\frac{486x}{32} \) - **Seventh term**: \( T_6 = \binom{6}{6} a^0 b^6 = \left(-\frac{3}{2x}\right)^6 = \frac{729}{64x^6} \) 4. **Combine all terms**: \[ \left(\frac{2x}{3} - \frac{3}{2x}\right)^{6} = \frac{64x^6}{729} - \frac{576x^4}{243} + \frac{240x^4}{81} - 20x^3 + \frac{2430x^2}{16} - \frac{486x}{32} + \frac{729}{64x^6} \] ### Part (ii): Expand \(\left(\frac{2}{x} - \frac{x}{2}\right)^{5}\) 1. **Identify the terms**: Let \( a = \frac{2}{x} \) and \( b = -\frac{x}{2} \). The expression can be rewritten as \( (a + b)^5 \). 2. **Use the Binomial Theorem**: Here, \( n = 5 \). 3. **Calculate each term**: - **First term**: \( T_0 = \binom{5}{0} a^5 b^0 = 1 \cdot \left(\frac{2}{x}\right)^5 = \frac{32}{x^5} \) - **Second term**: \( T_1 = \binom{5}{1} a^4 b^1 = 5 \cdot \left(\frac{2}{x}\right)^4 \cdot \left(-\frac{x}{2}\right) = -\frac{80}{x^3} \) - **Third term**: \( T_2 = \binom{5}{2} a^3 b^2 = 10 \cdot \left(\frac{2}{x}\right)^3 \cdot \left(-\frac{x}{2}\right)^2 = \frac{40}{x} \) - **Fourth term**: \( T_3 = \binom{5}{3} a^2 b^3 = -10 \cdot \left(\frac{2}{x}\right)^2 \cdot \left(-\frac{x}{2}\right)^3 = -\frac{10x^2}{8} = -\frac{5x^2}{4} \) - **Fifth term**: \( T_4 = \binom{5}{4} a^1 b^4 = 5 \cdot \left(\frac{2}{x}\right)^1 \cdot \left(-\frac{x}{2}\right)^4 = -\frac{5 \cdot 16}{2x} = -\frac{80}{2x} = -\frac{40}{x} \) - **Sixth term**: \( T_5 = \binom{5}{5} a^0 b^5 = \left(-\frac{x}{2}\right)^5 = -\frac{x^5}{32} \) 4. **Combine all terms**: \[ \left(\frac{2}{x} - \frac{x}{2}\right)^{5} = \frac{32}{x^5} - \frac{80}{x^3} + \frac{40}{x} - \frac{5x^2}{4} - \frac{40}{x} - \frac{x^5}{32} \] ### Final Answers: 1. \(\left(\frac{2x}{3} - \frac{3}{2x}\right)^{6} = \frac{64x^6}{729} - \frac{576x^4}{243} + \frac{240x^4}{81} - 20x^3 + \frac{2430x^2}{16} - \frac{486x}{32} + \frac{729}{64x^6}\) 2. \(\left(\frac{2}{x} - \frac{x}{2}\right)^{5} = \frac{32}{x^5} - \frac{80}{x^3} + \frac{40}{x} - \frac{5x^2}{4} - \frac{40}{x} - \frac{x^5}{32}\)
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's triangle.

Expand : (i) (3x + 2)^3

Expand: ((x^(2))/(2)-(y^(2))/(3))^(6)

ii) (2x+6)(3x+6)

Expand: (2x-(1)/(x)) (3x+(2)/(x))

Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x)^(4) using binomial theorem.

Expand : (i) (5-3y-2)^(2) (ii) (x-(1)/(x)+5)^(2)

Expand : (i) (2x+3y)^(3) " " (ii) (5y-3x)^(3) " " (iii) (2a+3b)^(3) .

Expand: (5x-3y-2)^(2)

Expand : (i) (3x - 4y +5z)^2

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Try Yourself
  1. What is the last entry of any row of pascle's triangle?

    Text Solution

    |

  2. What is the 6th sicth entry in row 5 of pascle's triangle?

    Text Solution

    |

  3. Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's trian...

    Text Solution

    |

  4. Expand (2x^(2) + 4y^(2))^(6) using pascals triangle.

    Text Solution

    |

  5. Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x)^(4) using binomial theorem.

    Text Solution

    |

  6. Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

    Text Solution

    |

  7. Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

    Text Solution

    |

  8. Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

    Text Solution

    |

  9. Using bionomial theorem, show that (9^(n)-8n-1) is always divisible by...

    Text Solution

    |

  10. With the help of bionomial expansion, show that (4^(n)-3n) is always l...

    Text Solution

    |

  11. Find (1+x)^(4) + (1-x)^(4). Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(...

    Text Solution

    |

  12. Find (1+x)^(6) - (1-x)^(6). Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(...

    Text Solution

    |

  13. Find the fifth expansion of (a/3-3b)^(7)

    Text Solution

    |

  14. Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

    Text Solution

    |

  15. Write down the general term in the expansion of (x^(2)-y^(3))^6. (ii...

    Text Solution

    |

  16. Find the middle term in the expansion of (1+3x+3x^(2)+x^(3))^(2n)

    Text Solution

    |

  17. If in the expansion of (1+x)^(15), the coefficients of (r+3)^(t h)a n ...

    Text Solution

    |

  18. Evaluate the following: \ (x+sqrt(x^2-1))^6+(x-sqrt(x^2-1))^6

    Text Solution

    |

  19. if (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a++.^(n)C(2)a^(2)+ . . .+.^(n)C(n)a^(n...

    Text Solution

    |

  20. If (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a+.^(n)C(2)a^(2)+ . . +.^(n)C(n)a^(n),...

    Text Solution

    |