Home
Class 12
MATHS
Byusing binomial theorem evaluate (i) (1...

Byusing binomial theorem evaluate (i) `(107)^(5)` , (ii) `(55)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( (107)^5 \) and \( (55)^3 \) using the Binomial Theorem, we proceed as follows: ### Part (i): Evaluate \( (107)^5 \) 1. **Rewrite the expression**: \[ 107 = 100 + 7 \] So, we can express \( (107)^5 \) as: \[ (100 + 7)^5 \] 2. **Apply the Binomial Theorem**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{r=0}^{n} \binom{n}{r} x^{n-r} y^r \] Here, \( x = 100 \), \( y = 7 \), and \( n = 5 \). 3. **Expand using the theorem**: \[ (100 + 7)^5 = \sum_{r=0}^{5} \binom{5}{r} (100)^{5-r} (7)^r \] This gives us: \[ = \binom{5}{0} (100)^5 (7)^0 + \binom{5}{1} (100)^4 (7)^1 + \binom{5}{2} (100)^3 (7)^2 + \binom{5}{3} (100)^2 (7)^3 + \binom{5}{4} (100)^1 (7)^4 + \binom{5}{5} (100)^0 (7)^5 \] 4. **Calculate each term**: - For \( r = 0 \): \[ \binom{5}{0} (100)^5 (7)^0 = 1 \times 10000000000 \times 1 = 10000000000 \] - For \( r = 1 \): \[ \binom{5}{1} (100)^4 (7)^1 = 5 \times 100000000 \times 7 = 3500000000 \] - For \( r = 2 \): \[ \binom{5}{2} (100)^3 (7)^2 = 10 \times 1000000 \times 49 = 490000000 \] - For \( r = 3 \): \[ \binom{5}{3} (100)^2 (7)^3 = 10 \times 10000 \times 343 = 34300000 \] - For \( r = 4 \): \[ \binom{5}{4} (100)^1 (7)^4 = 5 \times 100 \times 2401 = 120050 \] - For \( r = 5 \): \[ \binom{5}{5} (100)^0 (7)^5 = 1 \times 1 \times 16807 = 16807 \] 5. **Sum all the terms**: \[ 10000000000 + 3500000000 + 490000000 + 34300000 + 120050 + 16807 = 11859225007 \] Thus, \( (107)^5 = 11859225007 \). ### Part (ii): Evaluate \( (55)^3 \) 1. **Rewrite the expression**: \[ 55 = 50 + 5 \] So, we can express \( (55)^3 \) as: \[ (50 + 5)^3 \] 2. **Apply the Binomial Theorem**: Using the same theorem: \[ (50 + 5)^3 = \sum_{r=0}^{3} \binom{3}{r} (50)^{3-r} (5)^r \] 3. **Expand using the theorem**: \[ = \binom{3}{0} (50)^3 (5)^0 + \binom{3}{1} (50)^2 (5)^1 + \binom{3}{2} (50)^1 (5)^2 + \binom{3}{3} (50)^0 (5)^3 \] 4. **Calculate each term**: - For \( r = 0 \): \[ \binom{3}{0} (50)^3 (5)^0 = 1 \times 125000 = 125000 \] - For \( r = 1 \): \[ \binom{3}{1} (50)^2 (5)^1 = 3 \times 2500 \times 5 = 37500 \] - For \( r = 2 \): \[ \binom{3}{2} (50)^1 (5)^2 = 3 \times 50 \times 25 = 3750 \] - For \( r = 3 \): \[ \binom{3}{3} (50)^0 (5)^3 = 1 \times 1 \times 125 = 125 \] 5. **Sum all the terms**: \[ 125000 + 37500 + 3750 + 125 = 162375 \] Thus, \( (55)^3 = 162375 \). ### Final Answers: - \( (107)^5 = 11859225007 \) - \( (55)^3 = 162375 \)
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, evaluate : (102)^5

Using binomial theorem, evaluate : (101)^4

Using binomial theorem, evaluate : (99)^5

Using binomial theorem, evaluate : (96)^3

Use binomial theorem to evaluate (10.1)^(5) .

Using the binomial theorem, evaluate (102)^5 .

Using binomial theorem, evaluate : (999)^(3) .

Using binomial theorem compute : (10. 1)^5

Using binomial theorem find (i) (101)^(5) (ii) 51^(6)

Evaluate the followings using binomial theorem (i) (999)^(4) (ii) (49)^(5)

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Try Yourself
  1. What is the last entry of any row of pascle's triangle?

    Text Solution

    |

  2. What is the 6th sicth entry in row 5 of pascle's triangle?

    Text Solution

    |

  3. Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's trian...

    Text Solution

    |

  4. Expand (2x^(2) + 4y^(2))^(6) using pascals triangle.

    Text Solution

    |

  5. Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x)^(4) using binomial theorem.

    Text Solution

    |

  6. Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

    Text Solution

    |

  7. Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

    Text Solution

    |

  8. Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

    Text Solution

    |

  9. Using bionomial theorem, show that (9^(n)-8n-1) is always divisible by...

    Text Solution

    |

  10. With the help of bionomial expansion, show that (4^(n)-3n) is always l...

    Text Solution

    |

  11. Find (1+x)^(4) + (1-x)^(4). Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(...

    Text Solution

    |

  12. Find (1+x)^(6) - (1-x)^(6). Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(...

    Text Solution

    |

  13. Find the fifth expansion of (a/3-3b)^(7)

    Text Solution

    |

  14. Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

    Text Solution

    |

  15. Write down the general term in the expansion of (x^(2)-y^(3))^6. (ii...

    Text Solution

    |

  16. Find the middle term in the expansion of (1+3x+3x^(2)+x^(3))^(2n)

    Text Solution

    |

  17. If in the expansion of (1+x)^(15), the coefficients of (r+3)^(t h)a n ...

    Text Solution

    |

  18. Evaluate the following: \ (x+sqrt(x^2-1))^6+(x-sqrt(x^2-1))^6

    Text Solution

    |

  19. if (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a++.^(n)C(2)a^(2)+ . . .+.^(n)C(n)a^(n...

    Text Solution

    |

  20. If (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a+.^(n)C(2)a^(2)+ . . +.^(n)C(n)a^(n),...

    Text Solution

    |