Home
Class 12
MATHS
Find the fifth expansion of (a/3-3b)^(7)...

Find the fifth expansion of `(a/3-3b)^(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the fifth term in the expansion of \((\frac{a}{3} - 3b)^{7}\), we will use the Binomial Theorem. According to the Binomial Theorem, the general term \(T_{r+1}\) in the expansion of \((x + y)^n\) is given by: \[ T_{r+1} = \binom{n}{r} x^{n-r} y^r \] In our case, we can identify: - \(n = 7\) - \(x = \frac{a}{3}\) - \(y = -3b\) ### Step 1: Write the general term The general term \(T_{r+1}\) for our expansion is: \[ T_{r+1} = \binom{7}{r} \left(\frac{a}{3}\right)^{7-r} (-3b)^r \] ### Step 2: Find the fifth term To find the fifth term, we need to calculate \(T_5\), which corresponds to \(r = 4\) (since \(T_{r+1}\) corresponds to \(r\)): \[ T_5 = \binom{7}{4} \left(\frac{a}{3}\right)^{7-4} (-3b)^4 \] ### Step 3: Calculate the components 1. Calculate \(\binom{7}{4}\): \[ \binom{7}{4} = \frac{7!}{4!(7-4)!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35 \] 2. Calculate \(\left(\frac{a}{3}\right)^{3}\): \[ \left(\frac{a}{3}\right)^{3} = \frac{a^3}{27} \] 3. Calculate \((-3b)^{4}\): \[ (-3b)^{4} = 81b^4 \quad (\text{since } (-3)^4 = 81) \] ### Step 4: Combine the components Now substitute these values back into the expression for \(T_5\): \[ T_5 = 35 \cdot \frac{a^3}{27} \cdot 81b^4 \] ### Step 5: Simplify Now, simplify \(T_5\): \[ T_5 = 35 \cdot \frac{81}{27} a^3 b^4 \] Calculating \(\frac{81}{27} = 3\): \[ T_5 = 35 \cdot 3 a^3 b^4 = 105 a^3 b^4 \] ### Final Answer Thus, the fifth term in the expansion of \((\frac{a}{3} - 3b)^{7}\) is: \[ \boxed{105 a^3 b^4} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

Find the decimal expansion of 1/7

Find the 3rd term the end in the expansion of (2-3x)^(8)

Find the middle term in the expansion of (3-(x^(3))/(6))^(7)

The term containing a^(3)b^(4) in the expansion of (a-2b)^(7) is

Find the middle terms in the expansions of (3-x^3/6)^7

Find the 7th term in the expansion of (3x^2-1/(x^3))^(10)dot

Find the coefficient of x^7 in the expansion of (a+3x-2x^3)^(10)dot

Find the middle term in the expansion of (a^(3)+ba)^(28) .

Find the decimal expansions of (10)/3,7/8 and 1/7 .

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Try Yourself
  1. What is the last entry of any row of pascle's triangle?

    Text Solution

    |

  2. What is the 6th sicth entry in row 5 of pascle's triangle?

    Text Solution

    |

  3. Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's trian...

    Text Solution

    |

  4. Expand (2x^(2) + 4y^(2))^(6) using pascals triangle.

    Text Solution

    |

  5. Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x)^(4) using binomial theorem.

    Text Solution

    |

  6. Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

    Text Solution

    |

  7. Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

    Text Solution

    |

  8. Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

    Text Solution

    |

  9. Using bionomial theorem, show that (9^(n)-8n-1) is always divisible by...

    Text Solution

    |

  10. With the help of bionomial expansion, show that (4^(n)-3n) is always l...

    Text Solution

    |

  11. Find (1+x)^(4) + (1-x)^(4). Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(...

    Text Solution

    |

  12. Find (1+x)^(6) - (1-x)^(6). Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(...

    Text Solution

    |

  13. Find the fifth expansion of (a/3-3b)^(7)

    Text Solution

    |

  14. Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

    Text Solution

    |

  15. Write down the general term in the expansion of (x^(2)-y^(3))^6. (ii...

    Text Solution

    |

  16. Find the middle term in the expansion of (1+3x+3x^(2)+x^(3))^(2n)

    Text Solution

    |

  17. If in the expansion of (1+x)^(15), the coefficients of (r+3)^(t h)a n ...

    Text Solution

    |

  18. Evaluate the following: \ (x+sqrt(x^2-1))^6+(x-sqrt(x^2-1))^6

    Text Solution

    |

  19. if (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a++.^(n)C(2)a^(2)+ . . .+.^(n)C(n)a^(n...

    Text Solution

    |

  20. If (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a+.^(n)C(2)a^(2)+ . . +.^(n)C(n)a^(n),...

    Text Solution

    |