Home
Class 12
MATHS
Find the fifth expansion of (2x^(2)-1/(3...

Find the fifth expansion of `(2x^(2)-1/(3x^(2)))^(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the fifth term in the expansion of \((2x^2 - \frac{1}{3x^2})^{10}\), we will use the Binomial Theorem. The Binomial Theorem states that: \[ (a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r \] Where \(\binom{n}{r}\) is the binomial coefficient, which can be calculated as \(\frac{n!}{r!(n-r)!}\). ### Step-by-step Solution: 1. **Identify \(a\), \(b\), and \(n\)**: - Here, \(a = 2x^2\), \(b = -\frac{1}{3x^2}\), and \(n = 10\). 2. **Find the general term**: - The general term \(T_{r+1}\) in the expansion is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] - For our case: \[ T_{r+1} = \binom{10}{r} (2x^2)^{10-r} \left(-\frac{1}{3x^2}\right)^r \] 3. **Find the fifth term**: - The fifth term corresponds to \(r = 4\) (since \(T_{r+1}\) corresponds to \(T_5\)). \[ T_5 = \binom{10}{4} (2x^2)^{10-4} \left(-\frac{1}{3x^2}\right)^4 \] 4. **Calculate \(\binom{10}{4}\)**: \[ \binom{10}{4} = \frac{10!}{4!(10-4)!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210 \] 5. **Calculate \((2x^2)^{6}\)**: \[ (2x^2)^{6} = 2^6 (x^2)^6 = 64x^{12} \] 6. **Calculate \(\left(-\frac{1}{3x^2}\right)^4\)**: \[ \left(-\frac{1}{3x^2}\right)^4 = \frac{1}{81x^8} \] 7. **Combine the terms**: - Now substituting back into \(T_5\): \[ T_5 = 210 \cdot 64x^{12} \cdot \frac{1}{81x^8} \] - Simplifying this: \[ T_5 = 210 \cdot 64 \cdot \frac{x^{12}}{81x^8} = 210 \cdot 64 \cdot \frac{1}{81} x^{4} \] 8. **Calculate the coefficient**: - Calculate \(210 \cdot 64\): \[ 210 \cdot 64 = 13440 \] - Now divide by \(81\): \[ \frac{13440}{81} \] 9. **Final Result**: - Thus, the fifth term in the expansion is: \[ T_5 = \frac{13440}{81} x^4 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Find the 6th term in expansion of (2x^2-1//3x^2)^(10)dot

Find the constant term in the expansion of (2x^(4)-(1)/(3x^(7)))^(11)

Find the constant term in the expansion of (2x^(4)-(1)/(3x^(7)))^(11)

Find the coefficient of x^(6) in the expansion of (2x^(3)-(1)/(3x^(3)))^(10)

Find the coefficient of x^(6) in the expansion of (2x^(3)-(1)/(3x^(3)))^(10)

Find the 6^(th) term from the end in the expansion of (2x-(1)/(x^(2)))^(10) .

Find the expansion of (1+2x−x^2)^4

Find the middle term in the following expansion: (i) (x^(2)-1/x^2)^(10)

Find the 7th term in the expansion of (3x^2-1/(x^3))^(10)dot

Find the 7th term n the expansion of (3x^2-1/(x^3))^(10)dot

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Try Yourself
  1. What is the last entry of any row of pascle's triangle?

    Text Solution

    |

  2. What is the 6th sicth entry in row 5 of pascle's triangle?

    Text Solution

    |

  3. Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's trian...

    Text Solution

    |

  4. Expand (2x^(2) + 4y^(2))^(6) using pascals triangle.

    Text Solution

    |

  5. Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x)^(4) using binomial theorem.

    Text Solution

    |

  6. Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

    Text Solution

    |

  7. Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

    Text Solution

    |

  8. Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

    Text Solution

    |

  9. Using bionomial theorem, show that (9^(n)-8n-1) is always divisible by...

    Text Solution

    |

  10. With the help of bionomial expansion, show that (4^(n)-3n) is always l...

    Text Solution

    |

  11. Find (1+x)^(4) + (1-x)^(4). Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(...

    Text Solution

    |

  12. Find (1+x)^(6) - (1-x)^(6). Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(...

    Text Solution

    |

  13. Find the fifth expansion of (a/3-3b)^(7)

    Text Solution

    |

  14. Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

    Text Solution

    |

  15. Write down the general term in the expansion of (x^(2)-y^(3))^6. (ii...

    Text Solution

    |

  16. Find the middle term in the expansion of (1+3x+3x^(2)+x^(3))^(2n)

    Text Solution

    |

  17. If in the expansion of (1+x)^(15), the coefficients of (r+3)^(t h)a n ...

    Text Solution

    |

  18. Evaluate the following: \ (x+sqrt(x^2-1))^6+(x-sqrt(x^2-1))^6

    Text Solution

    |

  19. if (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a++.^(n)C(2)a^(2)+ . . .+.^(n)C(n)a^(n...

    Text Solution

    |

  20. If (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a+.^(n)C(2)a^(2)+ . . +.^(n)C(n)a^(n),...

    Text Solution

    |