Home
Class 12
MATHS
if (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a++.^(n)...

if `(1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n)`, then prove that
`(.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))=` Sum of first n natural numbers.

Text Solution

AI Generated Solution

The correct Answer is:
To prove the given statement, we start with the binomial expansion of \((1 + a)^n\): \[ (1 + a)^n = \binom{n}{0} + \binom{n}{1} a + \binom{n}{2} a^2 + \ldots + \binom{n}{n} a^n \] We need to prove that: \[ \frac{\binom{n}{1}}{\binom{n}{0}} + \frac{2 \cdot \binom{n}{2}}{\binom{n}{1}} + \frac{3 \cdot \binom{n}{3}}{\binom{n}{2}} + \ldots + \frac{n \cdot \binom{n}{n}}{\binom{n}{n-1}} = \text{Sum of first } n \text{ natural numbers} \] ### Step 1: Express each term using the property of binomial coefficients Using the property of binomial coefficients, we know that: \[ \frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n - (r - 1)}{r} = \frac{n - r + 1}{r} \] ### Step 2: Rewrite the left-hand side We can rewrite the left-hand side of the equation as follows: \[ \frac{\binom{n}{1}}{\binom{n}{0}} + \frac{2 \cdot \binom{n}{2}}{\binom{n}{1}} + \frac{3 \cdot \binom{n}{3}}{\binom{n}{2}} + \ldots + \frac{n \cdot \binom{n}{n}}{\binom{n}{n-1}} \] Substituting the property of binomial coefficients: \[ = 1 \cdot \frac{n}{1} + 2 \cdot \frac{n-1}{2} + 3 \cdot \frac{n-2}{3} + \ldots + n \cdot \frac{1}{n} \] ### Step 3: Simplify the expression This simplifies to: \[ = n + (n-1) + (n-2) + \ldots + 1 \] ### Step 4: Calculate the sum The sum \(n + (n-1) + (n-2) + \ldots + 1\) can be calculated using the formula for the sum of the first \(n\) natural numbers: \[ \text{Sum} = \frac{n(n + 1)}{2} \] ### Conclusion Thus, we have shown that: \[ \frac{\binom{n}{1}}{\binom{n}{0}} + \frac{2 \cdot \binom{n}{2}}{\binom{n}{1}} + \frac{3 \cdot \binom{n}{3}}{\binom{n}{2}} + \ldots + \frac{n \cdot \binom{n}{n}}{\binom{n}{n-1}} = \frac{n(n + 1)}{2} \] This is indeed the sum of the first \(n\) natural numbers. Hence, the statement is proved.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

(.^(n)C_(0))^(2)+(.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+ . . .+(.^(n)C_(n))^(2) equals

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Try Yourself
  1. What is the last entry of any row of pascle's triangle?

    Text Solution

    |

  2. What is the 6th sicth entry in row 5 of pascle's triangle?

    Text Solution

    |

  3. Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's trian...

    Text Solution

    |

  4. Expand (2x^(2) + 4y^(2))^(6) using pascals triangle.

    Text Solution

    |

  5. Expand (i) (x+1/x)^(7) , (ii) (x^(2)+2/x)^(4) using binomial theorem.

    Text Solution

    |

  6. Expand (i) ((2x)/3-(3)/(2x))^(6) , (ii) (2/x-x/2)^(5)

    Text Solution

    |

  7. Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

    Text Solution

    |

  8. Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

    Text Solution

    |

  9. Using bionomial theorem, show that (9^(n)-8n-1) is always divisible by...

    Text Solution

    |

  10. With the help of bionomial expansion, show that (4^(n)-3n) is always l...

    Text Solution

    |

  11. Find (1+x)^(4) + (1-x)^(4). Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(...

    Text Solution

    |

  12. Find (1+x)^(6) - (1-x)^(6). Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(...

    Text Solution

    |

  13. Find the fifth expansion of (a/3-3b)^(7)

    Text Solution

    |

  14. Find the fifth expansion of (2x^(2)-1/(3x^(2)))^(10)

    Text Solution

    |

  15. Write down the general term in the expansion of (x^(2)-y^(3))^6. (ii...

    Text Solution

    |

  16. Find the middle term in the expansion of (1+3x+3x^(2)+x^(3))^(2n)

    Text Solution

    |

  17. If in the expansion of (1+x)^(15), the coefficients of (r+3)^(t h)a n ...

    Text Solution

    |

  18. Evaluate the following: \ (x+sqrt(x^2-1))^6+(x-sqrt(x^2-1))^6

    Text Solution

    |

  19. if (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a++.^(n)C(2)a^(2)+ . . .+.^(n)C(n)a^(n...

    Text Solution

    |

  20. If (1+a)^(n)=.^(n)C(0)+.^(n)C(1)a+.^(n)C(2)a^(2)+ . . +.^(n)C(n)a^(n),...

    Text Solution

    |