Home
Class 12
MATHS
The expansion (a+x)^(n) = .^(n)c(0)a^(n)...

The expansion `(a+x)^(n) = .^(n)c_(0)a^(n) + ^(n)c_(1)a^(n-1)x +` ………… +` .^(n)c_(n)x^(n)` is valid when n is

A

An integer

B

A rational number

C

An irrational number

D

A natural number

Text Solution

AI Generated Solution

The correct Answer is:
To determine when the expansion \((a+x)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} x^{k}\) is valid, we need to analyze the conditions under which the binomial theorem applies. ### Step-by-Step Solution: 1. **Understanding the Binomial Theorem**: The binomial theorem states that for any real numbers \(a\) and \(x\), and any integer \(n\), the expression \((a + x)^{n}\) can be expanded as: \[ (a + x)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} x^{k} \] where \(\binom{n}{k}\) is the binomial coefficient. 2. **Conditions for \(n\)**: The binomial coefficients \(\binom{n}{k}\) are defined only when \(n\) is a non-negative integer. This is because: - The binomial coefficient \(\binom{n}{k}\) is defined as: \[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \] - For \(k\) to be a valid index (where \(0 \leq k \leq n\)), \(n\) must be a non-negative integer. 3. **Conclusion**: Therefore, the expansion \((a+x)^{n}\) is valid when \(n\) is a natural number (which includes all non-negative integers: \(0, 1, 2, 3, \ldots\)). Thus, the answer is: - The expansion is valid when \(n\) is a natural number.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|20 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

When n is any postive integer,the expansion (x+a)^(n) = .^(n)c_(0)x^(n) + .^(n)c_(1)x^(n-1)a + ……. + .^(n)c_(n)a^(n) is valid only when

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

The middle term in the expansion of ((2x)/3-3/(2x^2))^(2n) is a. \ ^(2n)C_n b. (-1)^n\ ^(2n)C_(n\ )x^(-n) c. \ ^(2n)C_n x^(-n) d. none of these

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n) a_(i) a_(j) a_(k) and so on . If (1 + x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n) x^(n) the cefficient of x^(n) in the expansion of (x + C_(0))(x + C_(1)) (x + C_(2))...(x + C_(n)) is

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-A)
  1. A binomial is

    Text Solution

    |

  2. The expansion (a+x)^(n) = .^(n)c(0)a^(n) + ^(n)c(1)a^(n-1)x + ………… + ....

    Text Solution

    |

  3. If the coefficient of rth term and (r+1)^(th) term in the expansion of...

    Text Solution

    |

  4. When n is any postive integer,the expansion (x+a)^(n) = .^(n)c(0)x^(n)...

    Text Solution

    |

  5. If n is a positive integer, then the number of terms in the expansion ...

    Text Solution

    |

  6. The term independent of x in the expansion of (2x+1/(3x))^(6) is

    Text Solution

    |

  7. The 6th term of expansion of (x-1/x)^(10) is

    Text Solution

    |

  8. The number of the terms which are not similar in the expansion of (L+M...

    Text Solution

    |

  9. The exponent of x occuring in the 7th term of the expansion of ((ax)/2...

    Text Solution

    |

  10. The term containing a^(3)b^(4) in the expansion of (a-2b)^(7) is

    Text Solution

    |

  11. The coefficient of the term independent of x in the expansion of (x-3/...

    Text Solution

    |

  12. For an ideal gas, an illustration of three different paths A,(B+C) and...

    Text Solution

    |

  13. If p a n d q are positive, then prove that the coefficients of x^pa n ...

    Text Solution

    |

  14. The number of terms in expansion of {(a+4b)^(3)(a-4b)^(3)}^(2) is

    Text Solution

    |

  15. If r^(th) term in the expansion of (x^(2)+1/x)^(12) is independent of ...

    Text Solution

    |

  16. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  17. In the expansion of (2+1/(3x))^(n), the cofficient of x^(-7) and x^(-...

    Text Solution

    |

  18. In in the expansion of (1+px)^(q), q belongs to N, the coefficients of...

    Text Solution

    |

  19. The expansion of (x^(alpha)+1/x^(beta))^(n) has constant term, if

    Text Solution

    |

  20. The number of rational terms in the expansion of ((25)^(1/3) + 1/(25)^...

    Text Solution

    |