Home
Class 12
MATHS
sqrt(5){(sqrt(5)+1)^(50)-(sqrt(5)-1)^(50...

`sqrt(5){(sqrt(5)+1)^(50)-(sqrt(5)-1)^(50)}`

A

An irrational number

B

0

C

A natural number

D

A prime number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\sqrt{5} \left( (\sqrt{5}+1)^{50} - (\sqrt{5}-1)^{50} \right)\), we will use the Binomial Theorem. ### Step-by-Step Solution: 1. **Understanding the Expression**: We need to evaluate \(\sqrt{5} \left( (\sqrt{5}+1)^{50} - (\sqrt{5}-1)^{50} \right)\). 2. **Applying Binomial Theorem**: According to the Binomial Theorem, we can expand \((a+b)^n\) as: \[ (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] Here, we will expand both \((\sqrt{5}+1)^{50}\) and \((\sqrt{5}-1)^{50}\). 3. **Expanding \((\sqrt{5}+1)^{50}\)**: \[ (\sqrt{5}+1)^{50} = \sum_{k=0}^{50} \binom{50}{k} (\sqrt{5})^{50-k} (1)^k = \sum_{k=0}^{50} \binom{50}{k} (\sqrt{5})^{50-k} \] 4. **Expanding \((\sqrt{5}-1)^{50}\)**: \[ (\sqrt{5}-1)^{50} = \sum_{k=0}^{50} \binom{50}{k} (\sqrt{5})^{50-k} (-1)^k \] 5. **Combining the Expansions**: Now, we subtract the two expansions: \[ (\sqrt{5}+1)^{50} - (\sqrt{5}-1)^{50} = \sum_{k=0}^{50} \binom{50}{k} (\sqrt{5})^{50-k} - \sum_{k=0}^{50} \binom{50}{k} (\sqrt{5})^{50-k} (-1)^k \] This simplifies to: \[ = \sum_{k=0}^{50} \binom{50}{k} (\sqrt{5})^{50-k} (1 - (-1)^k) \] 6. **Identifying Odd and Even Terms**: The term \(1 - (-1)^k\) is zero for even \(k\) and \(2\) for odd \(k\). Thus, we only consider the odd \(k\): \[ = 2 \sum_{k \text{ odd}} \binom{50}{k} (\sqrt{5})^{50-k} \] 7. **Final Expression**: Therefore, we have: \[ \sqrt{5} \left( (\sqrt{5}+1)^{50} - (\sqrt{5}-1)^{50} \right) = 2\sqrt{5} \sum_{k \text{ odd}} \binom{50}{k} (\sqrt{5})^{50-k} \] 8. **Simplifying the Sum**: The sum can be expressed as: \[ = 2\sqrt{5} \left( \sum_{j=0}^{25} \binom{50}{2j+1} (\sqrt{5})^{50-(2j+1)} \right) \] where \(j\) runs from \(0\) to \(25\). ### Conclusion: The final result is: \[ \sqrt{5} \left( (\sqrt{5}+1)^{50} - (\sqrt{5}-1)^{50} \right) = 2\sqrt{5} \sum_{k \text{ odd}} \binom{50}{k} (\sqrt{5})^{50-k} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|20 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: (i) (2 + sqrt(5) )^(5) + (2 - sqrt(5) )^(5) (ii) ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) Hence, show in (ii), without using tables, that the value of ( sqrt(3) + 1)^(5) lies between 152 and 153.

The value of {(sqrt(2) +1)^(5) + (sqrt(2) -1)^(5)} ,is

Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6) (ii) (sqrt(5)+sqrt(2))^(4)-(sqrt(5)-sqrt(2))^(4)

Simplify the following expressions. (i) (5+sqrt(7))(2+sqrt(5)) (ii) (5+sqrt(5))(5-sqrt(5)) (iii) (sqrt(3)+sqrt(7))^2 (iv) (sqrt(11)-sqrt(7))(sqrt(11)+sqrt(7))

Simplify: (i) (7+3\ sqrt(5))/(3+\ sqrt(5))-(7-3\ sqrt(5))/(3-\ sqrt(5)) (ii) 1/(2+sqrt(3)\ )+2/(sqrt(5)-\ sqrt(3))+1/(2-\ sqrt(5))

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

Find the values of a and b in each of the following : (a)(5+2sqrt3)/(7+4sqrt(3))=a-6sqrt(3)" "(b)(3-sqrt(5))/(3+2sqrt(5))=asqrt(5)-(19)/(11) (c )(sqrt(2)+sqrt(3))/(3sqrt2-2sqrt(3))=2-bsqrt(6)" "(d)(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+(7)/(11)sqrt(5b)

The nubmber of non - zeroes terns in the expansion of (1+sqrt(5))^(6)+(sqrt(5)-1)^(6) is

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-A)
  1. In the expantion of (1+kx)^(4) the cofficient of x^(3) is 32, then th...

    Text Solution

    |

  2. In the expansion of (3+x/2)^(n) the coefficients of x^(7) and x^(8) ar...

    Text Solution

    |

  3. sqrt(5){(sqrt(5)+1)^(50)-(sqrt(5)-1)^(50)}

    Text Solution

    |

  4. In expansion of (x+a)^(5), T(2):T(3)=1:3, then x:a is equal to

    Text Solution

    |

  5. If the coefficient of x^(7)in [ax^(2) + (1/bx)]^(11) equals the coeffi...

    Text Solution

    |

  6. The middle term in the expansioin of (1+x)^(2n) is

    Text Solution

    |

  7. Cofficient of x^(12) in the expansion of (1+x^(2))^50(x+1/x)^(-10)

    Text Solution

    |

  8. The number of terms in expansion of (x^(2)+18x+81)^(15) is

    Text Solution

    |

  9. The term independent of x in the expanion of (root(6)(x)-(2)/(root(3)(...

    Text Solution

    |

  10. The middle terms in the expansion of (1+x)^(2n+1) is (are)

    Text Solution

    |

  11. (1.003)^(4) is nearby equal to

    Text Solution

    |

  12. The nubmber of non - zeroes terns in the expansion of (1+sqrt(5))^(6)+...

    Text Solution

    |

  13. The number of non -zeroes terms in the expansion of (sqrt(7)+1)^(75)-(...

    Text Solution

    |

  14. The number of terms in the expansion if (a+b+c)^(12) is

    Text Solution

    |

  15. Two consecutive terms in the expansion of (3+2x)^74 have equal coeffic...

    Text Solution

    |

  16. If the coefficients of rth, (r+ 1)th and (r + 2)th terms in the expa...

    Text Solution

    |

  17. Cofficient of x^(3)y^(10)z^(5) in expansion of (xy+yz+zx)^(6) is

    Text Solution

    |

  18. The ratio of coefficients x^(3) and x^(4) in the expansion of (1+x)^(1...

    Text Solution

    |

  19. Given the integers r gt 1, n gt 2 and coefficients of (3r) th and (r+2...

    Text Solution

    |

  20. Find the coefficient of x^5 in the expansion of (1+x^2)^5(1+x)^4.

    Text Solution

    |