Home
Class 12
MATHS
If (1+2x+3x^(2))^(10)=a(0)+a(1)x+a(2)x^(...

If `(1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20),` then

A

`a_(1)=20`

B

`a_(2)=210`

C

`a_(4)=8085`

D

`a_(20)=2^(2).3^(7).7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the coefficients \( a_1, a_2, a_4, \) and \( a_{20} \) in the expansion of \( (1 + 2x + 3x^2)^{10} \), we can use the multinomial theorem. ### Step-by-Step Solution: 1. **Understanding the Expansion**: We need to expand \( (1 + 2x + 3x^2)^{10} \) and find the coefficients of \( x^1, x^2, x^4, \) and \( x^{20} \). 2. **Finding \( a_{20} \)**: The term \( x^{20} \) can only be formed by taking \( 3x^2 \) ten times, since \( 2x \) and \( 1 \) cannot contribute to \( x^{20} \). Therefore, we have: \[ a_{20} = \text{Coefficient of } (3x^2)^{10} = 3^{10} \] \[ a_{20} = 59049 \] 3. **Finding \( a_1 \)**: To find \( a_1 \), we need to select \( x \) from \( 2x \) once and \( 1 \) from the remaining 9 terms: \[ a_1 = \binom{10}{1} \cdot (2) \cdot (1)^{9} = 10 \cdot 2 = 20 \] 4. **Finding \( a_2 \)**: For \( a_2 \), we can have: - \( x^2 \) from \( 3x^2 \) once and \( 1 \) from the remaining 9 terms. - \( x \) from \( 2x \) twice and \( 1 \) from the remaining 8 terms. Therefore, \[ a_2 = \binom{10}{1} \cdot 3 \cdot 1^8 + \binom{10}{2} \cdot (2^2) \cdot 1^8 \] \[ = 10 \cdot 3 + 45 \cdot 4 = 30 + 180 = 210 \] 5. **Finding \( a_4 \)**: For \( a_4 \), we can have: - \( x^2 \) from \( 3x^2 \) twice and \( 1 \) from the remaining 8 terms. - \( x \) from \( 2x \) four times and \( 1 \) from the remaining 6 terms. Therefore, \[ a_4 = \binom{10}{2} \cdot 3^2 \cdot 1^8 + \binom{10}{4} \cdot (2^4) \cdot 1^6 \] \[ = 45 \cdot 9 + 210 \cdot 16 = 405 + 3360 = 3965 \] ### Final Coefficients: - \( a_1 = 20 \) - \( a_2 = 210 \) - \( a_4 = 3965 \) - \( a_{20} = 59049 \) ### Summary: The coefficients are: - \( a_1 = 20 \) - \( a_2 = 210 \) - \( a_4 = 3965 \) - \( a_{20} = 59049 \)
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-E) Objective type question (Assertion-Reson Type Questions)|6 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If (1+x+x^(2))^(n)=1 +a_(1)x+a_(2)x^(2)+a_(3)x^(3) +……..+a_(2n).x^(2n) then prove that: (i) a_(1)+a_(3)+a_(5)+…..+a_(2n-1) =(3^(n)-1)/(2) (ii) a_(2)+a_(4)+a_(6)+……+a_(2n)=(3^(n)-1)/(2)

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+3x-2x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2).+…+a_(20)x^(20) then prove that a_(0)-a_(1)++a_(2)-a_(3)+……+a_(20)=4^(10)

If (1+3x-2x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2).+…+a_(20)x^(20) then prove that a_(0)+a_(1)+a_(2)+……+a_(20)=2^(10)

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1 + x + x^(2) + x^(3))^(n) = a_(0) + a_(1)x + a_(2)x^(2)+"……….."a_(3n)x^(3n) then which of following are correct

Let n be positive integer such that, (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then a_(r) is :