Home
Class 12
MATHS
(.^(n)C(0))^(2)+(.^(n)C(1))^(2)+(.^(n)C(...

`(.^(n)C_(0))^(2)+(.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+ . . .+(.^(n)C_(n))^(2)` equals

A

`.^(2n)C_(n)`

B

`((2n-1)!)/(((n-1)!)^(2))((2)/(n))`

C

`(n!)^(2)`

D

`(.^(.2n)C_(n))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{k=0}^{n} \binom{n}{k}^2 \), we can use the Binomial Theorem and some properties of binomial coefficients. Let's go through the steps: ### Step-by-Step Solution: 1. **Understanding the Sum**: We need to evaluate the sum of the squares of the binomial coefficients: \[ S = \sum_{k=0}^{n} \binom{n}{k}^2 \] 2. **Using the Binomial Theorem**: Recall the Binomial Theorem states: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] If we set \( x = 1 \) and \( y = 1 \), we get: \[ (1 + 1)^n = 2^n = \sum_{k=0}^{n} \binom{n}{k} \] 3. **Rearranging the Binomial Theorem**: Now consider the expression \( (1+x)^n(1+x)^n \): \[ (1+x)^n(1+x)^n = (1+x)^{2n} \] The left-hand side can be expanded as: \[ \sum_{k=0}^{n} \binom{n}{k} x^k \sum_{j=0}^{n} \binom{n}{j} x^j = \sum_{m=0}^{2n} \left( \sum_{k=0}^{m} \binom{n}{k} \binom{n}{m-k} \right) x^m \] 4. **Identifying Coefficients**: The coefficient of \( x^m \) in the expansion of \( (1+x)^{2n} \) is \( \binom{2n}{m} \). Therefore, we have: \[ \sum_{k=0}^{m} \binom{n}{k} \binom{n}{m-k} = \binom{2n}{m} \] 5. **Setting \( m = n \)**: For \( m = n \), we find: \[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n} \] Since \( \binom{n}{n-k} = \binom{n}{k} \), we can rewrite this as: \[ \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \] 6. **Final Result**: Thus, we conclude that: \[ S = \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \] ### Conclusion: The value of \( \sum_{k=0}^{n} \binom{n}{k}^2 \) is \( \binom{2n}{n} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-E) Objective type question (Assertion-Reson Type Questions)|6 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-B)|34 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

Prove that (""^(2n)C_(0))^2-(""^(2n)C_(1))^2+(""^(2n)C_(2))^2-.....+(-1)^n(""^(2n)C_(2n))^2=(-1)^n.""^(2n)C_(n)

If S_(n) = (.^(n)C_(0))^(2) + (.^(n)C_(1))^(2) + (.^(n)C_(n))^(n) , then maximum value of [(S_(n+1))/(S_(n))] is "_____" . (where [*] denotes the greatest integer function)

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to