Home
Class 12
MATHS
Statement-1: The middle term of (x+(1)/(...

Statement-1: The middle term of `(x+(1)/(x))^(2n)` can exceed `((2n)^(n))/(n!)` for some value of x.
Statement-2: The coefficient of `x^(n)` in the expansion of `(1-2x+3x^(2)-4x^(3)+ . . .)^(-n)` is `(1*3*5 . . .(2n-1))/(n!)*2^(n)`.
Statement-3: The coefficient of `x^(5)` in `(1+2x+3x^(2)+ . . .)^(-3//2)` is 2.1.

A

TTF

B

FTT

C

FTF

D

FFF

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze each statement one by one and determine whether they are true or false based on mathematical principles and the Binomial Theorem. ### Statement 1: **Claim:** The middle term of \( (x + \frac{1}{x})^{2n} \) can exceed \( \frac{(2n)^n}{n!} \) for some value of \( x \). **Solution:** 1. **Identify the middle term:** For the expansion of \( (x + \frac{1}{x})^{2n} \), the middle term occurs when \( r = n \) (since there are \( 2n + 1 \) terms). 2. **General term formula:** The \( r \)-th term in the expansion is given by: \[ T_r = \binom{2n}{r} x^{2n-r} \left(\frac{1}{x}\right)^r = \binom{2n}{r} x^{2n - 2r} \] 3. **Middle term for \( r = n \):** \[ T_n = \binom{2n}{n} x^{2n - 2n} = \binom{2n}{n} \] 4. **Evaluate \( \binom{2n}{n} \):** The value of \( \binom{2n}{n} \) can be approximated using Stirling's approximation: \[ \binom{2n}{n} \approx \frac{4^n}{\sqrt{\pi n}} \] 5. **Comparison:** We need to check if \( \binom{2n}{n} \) can exceed \( \frac{(2n)^n}{n!} \). Using Stirling's approximation for \( n! \): \[ n! \approx \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n \] Therefore, we can show that: \[ \frac{(2n)^n}{n!} \approx \frac{(2n)^n e^n}{\sqrt{2 \pi n} n^n} = \frac{2^n e^n}{\sqrt{2 \pi n}} \] As \( n \) grows, \( \binom{2n}{n} \) can exceed \( \frac{(2n)^n}{n!} \). **Conclusion:** The statement is **True**. ### Statement 2: **Claim:** The coefficient of \( x^n \) in the expansion of \( (1 - 2x + 3x^2 - 4x^3 + \ldots)^{-n} \) is \( \frac{1 \cdot 3 \cdot 5 \ldots (2n - 1)}{n!} \cdot 2^n \). **Solution:** 1. **Recognize the series:** The series \( 1 - 2x + 3x^2 - 4x^3 + \ldots \) can be expressed as a power series. 2. **Transform the series:** This series can be rewritten as: \[ \sum_{k=0}^{\infty} (-1)^k (k+1) x^k = \frac{1}{(1 + 2x)^2} \] 3. **Expansion:** We need to find the coefficient of \( x^n \) in \( \left(\frac{1}{(1 + 2x)^2}\right)^{-n} \). 4. **Using the Binomial Theorem:** The coefficient of \( x^n \) in \( (1 + 2x)^{2n} \) is given by: \[ \binom{2n}{n} (2)^n \] 5. **Final coefficient:** The coefficient simplifies to: \[ \frac{(2n)!}{(n!)^2} \cdot 2^n \] This does not match the proposed coefficient. **Conclusion:** The statement is **False**. ### Statement 3: **Claim:** The coefficient of \( x^5 \) in \( (1 + 2x + 3x^2 + \ldots)^{-3/2} \) is 2.1. **Solution:** 1. **Recognize the series:** The series \( 1 + 2x + 3x^2 + \ldots \) can be expressed as: \[ \frac{1}{(1 - x)^2} \] 2. **Transform the series:** Thus, \( (1 + 2x + 3x^2 + \ldots)^{-3/2} = \left(\frac{1}{(1-x)^2}\right)^{-3/2} = (1-x)^3 \). 3. **Find the coefficient of \( x^5 \):** The expansion of \( (1-x)^3 \) gives: \[ \sum_{k=0}^{\infty} \binom{3}{k} (-1)^k x^k \] The coefficient of \( x^5 \) in this expansion is zero because the polynomial degree is less than 5. **Conclusion:** The statement is **False**. ### Final Summary: - **Statement 1:** True - **Statement 2:** False - **Statement 3:** False
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-I) Objective type question (Subjective Type Questions)|8 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-G) Objective type question (Integer Answer Type Questions)|1 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3)) , is

The coefficient of x^n in the expansion of (1 + x+x^2+...........)^-n , is

If, |x|<1,Find the coefficient of x^n in the expansion of (1+ 2x + 3x^2 + 4x^3 + …..)^(1/2)

The sum of the coefficients in the expansion of (1 - x + x^(2) - x^(3))^(n) ,is

If |x|<1, then find the coefficient of x^n in the expansion of (1+2x+3x^2+4x^3+)^(1//2)dot

The coefficients fo x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) are in the ratio

If |x| lt 1 , then the coefficient of x^n in expansion of (1+x+x^2 + x^3 +…….)^2 is

The coefficient of x^(n-2) in the polynomial (x-1)(x-2)(x-3)...(x-n) is

The sum of the coefficients of middle terms in the expansion of (1+x)^(2n-1)

If |x|<1, then the coefficient of x^n in expansion of (1+x+x^2+x^3+)^2 is a. n b. n-1 c. n+2 d. n+1

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-H) Objective type question (Multiple True-False Type Questions)
  1. Statement-1: The integeral part of (8+3sqrt(7))^(20) is even. Statem...

    Text Solution

    |

  2. Statement-1: The middle term of (x+(1)/(x))^(2n) can exceed ((2n)^(n))...

    Text Solution

    |