Home
Class 12
MATHS
In the expansion off (1+x)^(10)=.^(10)C(...

In the expansion off `(1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10)`, then value of
`528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)]` is equal to________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ 528 \left[ \frac{{\binom{10}{0}}}{2} - \frac{{\binom{10}{1}}}{3} + \frac{{\binom{10}{2}}}{4} - \frac{{\binom{10}{3}}}{5} + \ldots + \frac{{\binom{10}{10}}}{12} \right] \] ### Step 1: Understanding the Series The series can be represented as: \[ S = \sum_{k=0}^{10} (-1)^k \frac{\binom{10}{k}}{k+2} \] ### Step 2: Using Integration To evaluate this sum, we can use the integral representation of the series. The integral representation for the sum can be derived from the binomial expansion: \[ \int_0^1 x(1+x)^{10} \, dx \] ### Step 3: Calculate the Integral We can simplify the integral: \[ \int_0^1 x(1+x)^{10} \, dx = \int_0^1 x \sum_{k=0}^{10} \binom{10}{k} x^k \, dx = \sum_{k=0}^{10} \binom{10}{k} \int_0^1 x^{k+1} \, dx \] The integral \(\int_0^1 x^{k+1} \, dx\) evaluates to \(\frac{1}{k+2}\). Thus, we have: \[ \int_0^1 x(1+x)^{10} \, dx = \sum_{k=0}^{10} \binom{10}{k} \frac{1}{k+2} \] ### Step 4: Evaluating the Integral Now we need to evaluate the integral: \[ \int_0^1 x(1+x)^{10} \, dx \] Using integration by parts, let \(u = (1+x)^{10}\) and \(dv = x \, dx\). Then \(du = 10(1+x)^9 \, dx\) and \(v = \frac{x^2}{2}\). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Calculating this gives: \[ \int_0^1 x(1+x)^{10} \, dx = \left[ \frac{x^2}{2}(1+x)^{10} \right]_0^1 - \int_0^1 \frac{x^2}{2} \cdot 10(1+x)^9 \, dx \] Evaluating the boundary terms gives: \[ = \frac{1}{2}(1+1)^{10} - 0 = \frac{1}{2} \cdot 1024 = 512 \] Now we need to evaluate the second integral, which can be simplified further. ### Step 5: Final Calculation After evaluating the integral, we find: \[ \int_0^1 x(1+x)^{10} \, dx = \frac{512}{12} \] Thus, we can substitute back into our original expression: \[ S = \frac{512}{12} \] Now substituting this into our original expression: \[ 528 \cdot S = 528 \cdot \frac{512}{12} = 44 \cdot 512 = 22528 \] ### Final Answer The value of the expression is: \[ \boxed{22528} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-H) Objective type question (Multiple True-False Type Questions)|2 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the sum .^(10)C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9

lim_(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) is equal to

If \ ^(10)C_x=\ \ ^(10)C_(x+4),\ find the value of xdot

Prove that ^10 C_1(x-1)^2-^(10)C_2(x-2)^2+^(10)C_3(x-3)^2+-^(10)C_(10)(x-10)^2=x^2