Home
Class 12
MATHS
Find .^(n)C(1)-(1)/(2).^(n)C(2)+(1)/(3)....

Find `.^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = \binom{n}{1} - \frac{1}{2} \binom{n}{2} + \frac{1}{3} \binom{n}{3} - \cdots + (-1)^{n-1} \frac{1}{n} \binom{n}{n} \] ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be rewritten in summation notation as follows: \[ S = \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k} \binom{n}{k} \] 2. **Using the Binomial Theorem**: Recall the binomial theorem states that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] If we differentiate both sides with respect to \(x\), we get: \[ n(1 + x)^{n-1} = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1} \] 3. **Integrating**: Now, we can integrate both sides with respect to \(x\): \[ \int n(1 + x)^{n-1} \, dx = \sum_{k=1}^{n} \binom{n}{k} \frac{x^k}{k} \] This gives us: \[ n \frac{(1+x)^n}{n} = \sum_{k=1}^{n} \binom{n}{k} \frac{x^k}{k} \] Simplifying, we have: \[ (1 + x)^n = \sum_{k=1}^{n} \binom{n}{k} \frac{x^k}{k} \] 4. **Substituting \(x = -1\)**: Now, substituting \(x = -1\) in the equation: \[ (1 - 1)^n = \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^k}{k} \] This simplifies to: \[ 0 = \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^k}{k} \] 5. **Rearranging the Terms**: The sum can be rearranged to match our original expression: \[ \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k} \binom{n}{k} = 1 \] 6. **Final Result**: Therefore, the value of \(S\) is: \[ S = 1 \] ### Conclusion: The final answer to the problem is: \[ S = 1 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-H) Objective type question (Multiple True-False Type Questions)|2 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2+1/3) .^(n)C_(3) + "…" + (-1)^(n-1) (1+1/2+1/3 + "…." + 1/n) .^(n)C_(n) = 1/n

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .