Home
Class 12
MATHS
Let (log a)/( b-c) = (logb)/(c-a) = (lo...

Let ` (log a)/( b-c) = (logb)/(c-a) = (log c)/(a-b) `
STATEMENT 1: ` a^(a) b^(b) c^(c) = 1`
STATEMENT 2: `a^(b+c) b^(c +a) c^(a + b) = 1`

A

Statemant-1 is True , Statement-2 is True, Statement -2 is a correct explanation for Statement-1

B

Statemant-1 is True , Statement-2 is True, Statement -2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Stetement-2 is False.

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ \frac{\log a}{b - c} = \frac{\log b}{c - a} = \frac{\log c}{a - b} \] Let’s denote this common value as \( k \). Thus, we can write: \[ \log a = k(b - c) \] \[ \log b = k(c - a) \] \[ \log c = k(a - b) \] ### Step 1: Add the three equations Adding the three equations gives us: \[ \log a + \log b + \log c = k(b - c) + k(c - a) + k(a - b) \] ### Step 2: Simplify the right-hand side The right-hand side simplifies as follows: \[ k(b - c + c - a + a - b) = k(0) = 0 \] ### Step 3: Conclude the left-hand side Thus, we have: \[ \log a + \log b + \log c = 0 \] This implies: \[ \log(abc) = 0 \] ### Step 4: Exponentiate to remove logarithm Exponentiating both sides gives: \[ abc = 1 \] ### Step 5: Verify Statement 1 Now we need to verify Statement 1: \[ a^a b^b c^c = 1 \] Using the property of logarithms, we can express this as: \[ \log(a^a b^b c^c) = a \log a + b \log b + c \log c \] Substituting the values of \(\log a\), \(\log b\), and \(\log c\): \[ = a(k(b - c)) + b(k(c - a)) + c(k(a - b)) \] ### Step 6: Simplify the expression This simplifies to: \[ = k(ab - ac + bc - ab + ca - cb) = k(0) = 0 \] Thus: \[ \log(a^a b^b c^c) = 0 \implies a^a b^b c^c = 1 \] So, Statement 1 is true. ### Step 7: Verify Statement 2 Now we verify Statement 2: \[ a^{b+c} b^{c+a} c^{a+b} = 1 \] Using the property of logarithms again: \[ \log(a^{b+c} b^{c+a} c^{a+b}) = (b+c) \log a + (c+a) \log b + (a+b) \log c \] ### Step 8: Substitute the values Substituting the values of \(\log a\), \(\log b\), and \(\log c\): \[ = (b+c)(k(b-c)) + (c+a)(k(c-a)) + (a+b)(k(a-b)) \] ### Step 9: Simplify the expression This simplifies to: \[ = k[(b+c)(b-c) + (c+a)(c-a) + (a+b)(a-b)] \] ### Step 10: Expand and combine terms Expanding each term and combining gives: \[ = k[0] = 0 \] Thus: \[ \log(a^{b+c} b^{c+a} c^{a+b}) = 0 \implies a^{b+c} b^{c+a} c^{a+b} = 1 \] So, Statement 2 is also true. ### Conclusion Both statements are true, and we can conclude: - Statement 1: \( a^a b^b c^c = 1 \) is true. - Statement 2: \( a^{b+c} b^{c+a} c^{a+b} = 1 \) is true.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - G) Integer|6 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - H) True/False|3 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If (Ina)/((b-c)) =(Inb)/((c-a))=(Inc)/((a-b)) ,Prove that a^(b+c).b^(c+a).c^(a+b)=1

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =

If log(a+c)+log(a+c-2b)=2log(a-c) then

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

STATEMENT-1 If A cup B=A cup C, A cap B= A cap C, then B=C STATEMENT-2: A-(B cup C)=(A-B) cup (A-C) STATEMENT-3: If A cap (B' cap C')= A cap B cap C .

a, b, c are reals such that a+b+c=3 and 1/(a+b) + 1/(b+c) + 1/ (c+a) = 10/3 . The value of a/(b+c) + b/(c+a) + c/(a+b) is________.

If a (b +c), b (c+a) , c (a +b) are in A.P. , prove that (1)/(a), (a)/(b), (1)/(c ) are also ln A.P.