Home
Class 12
MATHS
Let S = (2+6)/(4^(100)) + (2 + 2 xx 6)/...

Let ` S = (2+6)/(4^(100)) + (2 + 2 xx 6)/(4^(99)) + (2 + 3xx 6)/(4^(98)) + …+ (2 + 99 xx6)/(4^(2)) + (2 + 100xx 6)/(4)` . Then 3S equals .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression for \( S \) given by: \[ S = \frac{2 + 6}{4^{100}} + \frac{2 + 2 \times 6}{4^{99}} + \frac{2 + 3 \times 6}{4^{98}} + \ldots + \frac{2 + 99 \times 6}{4^{2}} + \frac{2 + 100 \times 6}{4} \] We can separate \( S \) into two parts: one containing the constant terms and the other containing the terms multiplied by \( 6 \). ### Step 1: Separate the series Let’s define: - \( S_1 = \frac{2}{4^{100}} + \frac{2}{4^{99}} + \frac{2}{4^{98}} + \ldots + \frac{2}{4} \) - \( S_2 = \frac{6}{4^{100}} + \frac{2 \times 6}{4^{99}} + \frac{3 \times 6}{4^{98}} + \ldots + \frac{100 \times 6}{4} \) Thus, we can write: \[ S = S_1 + S_2 \] ### Step 2: Calculate \( S_1 \) The series \( S_1 \) is a geometric series where: - First term \( a = \frac{2}{4^{100}} \) - Common ratio \( r = \frac{1}{4} \) - Number of terms \( n = 100 \) The sum of a geometric series can be calculated using the formula: \[ S_n = a \frac{1 - r^n}{1 - r} \] Applying this to \( S_1 \): \[ S_1 = \frac{2}{4^{100}} \cdot \frac{1 - \left(\frac{1}{4}\right)^{100}}{1 - \frac{1}{4}} = \frac{2}{4^{100}} \cdot \frac{1 - \frac{1}{4^{100}}}{\frac{3}{4}} = \frac{2 \cdot 4}{3 \cdot 4^{100}} \left(1 - \frac{1}{4^{100}}\right) \] Simplifying gives: \[ S_1 = \frac{8}{3 \cdot 4^{99}} \left(1 - \frac{1}{4^{100}}\right) = \frac{8}{3 \cdot 4^{99}} - \frac{8}{3 \cdot 4^{199}} \] ### Step 3: Calculate \( S_2 \) Now, we need to calculate \( S_2 \): \[ S_2 = 6 \left( \frac{1}{4^{100}} + \frac{2}{4^{99}} + \frac{3}{4^{98}} + \ldots + \frac{100}{4} \right) \] This series can be rewritten as: \[ S_2 = 6 \sum_{k=1}^{100} \frac{k}{4^{101-k}} \] Using the formula for the sum of an arithmetic series multiplied by a geometric series, we can derive: \[ S_2 = 6 \cdot \frac{1}{4^{100}} \cdot \left( \frac{1 - \left(\frac{1}{4}\right)^{100}}{(1 - \frac{1}{4})^2} \right) \] Calculating gives: \[ S_2 = 6 \cdot \frac{1}{4^{100}} \cdot \frac{4}{3^2} \left(1 - \frac{1}{4^{100}}\right) = \frac{24}{9 \cdot 4^{100}} \left(1 - \frac{1}{4^{100}}\right) = \frac{8}{3 \cdot 4^{99}} - \frac{8}{3 \cdot 4^{199}} \] ### Step 4: Combine \( S_1 \) and \( S_2 \) Now we can combine \( S_1 \) and \( S_2 \): \[ S = S_1 + S_2 = \left(\frac{8}{3 \cdot 4^{99}} - \frac{8}{3 \cdot 4^{199}}\right) + \left(\frac{8}{3 \cdot 4^{99}} - \frac{8}{3 \cdot 4^{199}}\right) \] This simplifies to: \[ S = \frac{16}{3 \cdot 4^{99}} - \frac{16}{3 \cdot 4^{199}} \] ### Step 5: Calculate \( 3S \) Finally, we multiply \( S \) by 3: \[ 3S = 3 \left(\frac{16}{3 \cdot 4^{99}} - \frac{16}{3 \cdot 4^{199}}\right) = 16 \left(1 - \frac{1}{4^{100}}\right) \] As \( n \to \infty \), the term \( \frac{1}{4^{100}} \) approaches 0, thus: \[ 3S = 16 \] ### Final Answer Thus, the value of \( 3S \) is: \[ \boxed{600} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - H) True/False|3 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Simplify : (1/2xx1/4)+\ (1/2xx\ 6)

Simplify : a. 15^(7)-:5^(3) b. ((5^(4))^(3)xx2^(12))/(3^(12)) c. ((4^(3))^(2)xx5^(6))/(10^(6)) d. (2xx3^(4)xx2^(5))/(9xx4^(2)) e. (2^(2)xx3^(4)xx16)/(3^(2)xx32) f. (4^(5)xxa^(8)xxb^(16))/(4^(4)xxa^(7)xxb^(4))

Calculate the following a. (6.7 xx 10^(5)) xx (4.6 xx 10^(4)) b. (7.6 xx 10^(7)) xx (3.8 xx 10^(-4)) c. (6.8 xx 10^(-3)) xx (5.2 xx 10^(-4)) d. (6.7 xx 10^(5)) / (4.6 xx 10^(4)) e. (7.6 xx 10^(7)) / (3.8 xx 10^(-4)) f. (6.8 xx 10^(-3)) / (3.8 xx 10^(-4)) g. 7.65 xx 10^(2) + 2.72 xx 10^(3) h. 7.87 xx 10^(-4) - 2.61 xx 10^(-5)

Find: (i) 0.2 xx 6 (ii) 8 xx 4.6 (iii) 2.71 xx 5 (iv) 20.1 xx 4 (v) 0.05 xx 7 (vi) 211.02 xx 4 (vii) 2 xx 0.86

Evaluate (i) (8^-1 xx 5^3)/(2^-4) (ii) (5^-1 xx 2^-1) xx 6^-1

Multiply and reduce to lowest form : (i) 7 xx 3/5 (ii) 4 xx 1/3 (iii) 2 xx 6/7 (iv) 2/3 xx 4 (v) 5/2 xx 6 (vi) (11) 4/7 (vii) 20 xx 4/5 (viii) 13 xx 1/3 (ix) 15 xx 3/5

Multiply and express as a mixed fraction : (a) 3 xx 5 1/5 (b) 5 xx 6 3/4 (c) 7 xx 2 1/4 (d) 4 xx 6 1/3 (e) 3 1/4 xx 6 (f) 3 2/3 xx 8

Evaluate : a. (-1)^(11) b. (-3)^(2)xx(5)^(3) c. 6^(2)xx3^(3) d. (-2)^(3)xx(-5)^(2) e. (-1)^(7)xx2 f. (-1)^(4)xx(-1)^(5) g. 4^(3)xx3^(4) h. (-2)^(5)xx5^(3) i. (-4)^(3)xx(-6)^(3) j. (-1)^(33)xx(-3)^(1) k. ((-1)/(6))^(2) l. ((2)/(11))^(3)

Simplify : (i) (12^4xx9^3 xx 4)/(6^3 xx 8^2 xx 27) (ii) 2^3 xx a^3 xx 5a^4

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .