Home
Class 12
MATHS
The sum of sum (n=1)^(16) (n^(4))/(4n^(...

The sum of ` sum _(n=1)^(16) (n^(4))/(4n^(2) -1) ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum \[ \sum_{n=1}^{16} \frac{n^4}{4n^2 - 1} \] we will follow these steps: ### Step 1: Simplify the Expression We start with the expression: \[ \frac{n^4}{4n^2 - 1} \] We can factor the denominator: \[ 4n^2 - 1 = (2n - 1)(2n + 1) \] Thus, the expression becomes: \[ \frac{n^4}{(2n - 1)(2n + 1)} \] ### Step 2: Rewrite the Fraction Next, we can rewrite the fraction by multiplying and dividing by \(16\): \[ \frac{n^4}{(2n - 1)(2n + 1)} = \frac{16n^4}{16(4n^2 - 1)} = \frac{16n^4}{(2n - 1)(2n + 1)} \] ### Step 3: Split the Fraction Now we can split the fraction into two parts: \[ \frac{16n^4 - 1 + 1}{(2n - 1)(2n + 1)} = \frac{16n^4 - 1}{(2n - 1)(2n + 1)} + \frac{1}{(2n - 1)(2n + 1)} \] ### Step 4: Apply the Difference of Squares The first term can be simplified using the difference of squares: \[ 16n^4 - 1 = (4n^2 - 1)(4n^2 + 1) \] Thus, we have: \[ \frac{(4n^2 - 1)(4n^2 + 1)}{(2n - 1)(2n + 1)} = \frac{(4n^2 - 1)}{(2n - 1)(2n + 1)}(4n^2 + 1) \] ### Step 5: Calculate the Summation Now we can calculate the summation: \[ \sum_{n=1}^{16} \left( \frac{(4n^2 + 1)}{(2n - 1)(2n + 1)} + \frac{1}{(2n - 1)(2n + 1)} \right) \] Let’s denote: - \( S_1 = \sum_{n=1}^{16} (4n^2 + 1) \) - \( S_2 = \sum_{n=1}^{16} \frac{1}{(2n - 1)(2n + 1)} \) ### Step 6: Evaluate \( S_1 \) Using the formula for the sum of squares: \[ S_1 = 4 \sum_{n=1}^{16} n^2 + \sum_{n=1}^{16} 1 \] We know: \[ \sum_{n=1}^{N} n^2 = \frac{N(N + 1)(2N + 1)}{6} \] For \( N = 16 \): \[ \sum_{n=1}^{16} n^2 = \frac{16 \cdot 17 \cdot 33}{6} = 1496 \] Thus, \[ S_1 = 4 \cdot 1496 + 16 = 5984 + 16 = 6000 \] ### Step 7: Evaluate \( S_2 \) For \( S_2 \): \[ S_2 = \sum_{n=1}^{16} \frac{1}{(2n - 1)(2n + 1)} = \sum_{n=1}^{16} \left( \frac{1}{2n - 1} - \frac{1}{2n + 1} \right) \] This is a telescoping series, and after simplification, we find that: \[ S_2 = \frac{1}{1} - \frac{1}{33} = 1 - \frac{1}{33} = \frac{32}{33} \] ### Step 8: Combine Results Now we combine \( S_1 \) and \( S_2 \): \[ \sum_{n=1}^{16} \frac{n^4}{4n^2 - 1} = \frac{1}{16} (S_1 + S_2) = \frac{1}{16} (6000 + \frac{32}{33}) \] ### Step 9: Final Calculation Calculating: \[ = \frac{1}{16} \left( 6000 + \frac{32}{33} \right) = \frac{123376}{528} \text{ (after finding a common denominator)} \] Thus, the final answer is: \[ \frac{123376}{528} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - H) True/False|3 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to _______.

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

sum_(n=1) ^(oo) (1)/((2n-1)!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

The value of sum sum_(n=1)^(oo)cot^(-1)(((n^(2)+2n)(n^(2)+2n+1)+1)/(2n+2)) is equal to

sum_(n=1)^(prop)tan^(-1)((4n)/(n^(4)+5))=

The sum sum _(n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

Find the sum sum_(n=1)^(oo)(6^(n))/((3^(n)-2^(n))(3^(n+1)-2^(n+1)))