Home
Class 12
MATHS
If P(n) = cos^(n) theta + sin^(n) theta ...

If `P_(n) = cos^(n) theta + sin^(n) theta` where
`theta [0,pi/2], n `(-infinity, 2)` `then minimum of `P_(n)` will be
1. 1, 2.`1/2`, 3. `sqrt(2)`, 4.`1/sqrt(2)`

A

1

B

`1/2`

C

`sqrt(2)`

D

`1/sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( P_n = \cos^n \theta + \sin^n \theta \) where \( \theta \in [0, \frac{\pi}{2}] \) and \( n \in (-\infty, 2) \), we can follow these steps: ### Step 1: Understand the expression We start with the expression: \[ P_n = \cos^n \theta + \sin^n \theta \] This expression combines the powers of cosine and sine. **Hint:** Remember that both \( \cos \theta \) and \( \sin \theta \) are non-negative in the interval \( [0, \frac{\pi}{2}] \). ### Step 2: Analyze the behavior of \( P_n \) Since \( n < 2 \), the terms \( \cos^n \theta \) and \( \sin^n \theta \) will behave differently compared to when \( n \geq 2 \). Specifically, as \( n \) approaches negative infinity, both terms approach 1 when either \( \cos \theta \) or \( \sin \theta \) is 1. **Hint:** Consider the limits of \( \cos^n \theta \) and \( \sin^n \theta \) as \( n \) varies. ### Step 3: Find critical points To find the minimum value, we can evaluate \( P_n \) at the endpoints of the interval for \( \theta \): - When \( \theta = 0 \): \[ P_n(0) = \cos^n(0) + \sin^n(0) = 1^n + 0^n = 1 \] - When \( \theta = \frac{\pi}{2} \): \[ P_n\left(\frac{\pi}{2}\right) = \cos^n\left(\frac{\pi}{2}\right) + \sin^n\left(\frac{\pi}{2}\right) = 0^n + 1^n = 1 \] **Hint:** Evaluate \( P_n \) at \( \theta = 0 \) and \( \theta = \frac{\pi}{2} \) to check for minimum values. ### Step 4: Check the midpoint Now, consider \( \theta = \frac{\pi}{4} \): \[ P_n\left(\frac{\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}\right)^n + \left(\frac{1}{\sqrt{2}}\right)^n = 2 \left(\frac{1}{\sqrt{2}}\right)^n = 2^{1 - \frac{n}{2}} \] As \( n \) approaches negative infinity, this value approaches infinity. **Hint:** Analyze the value of \( P_n \) at \( \theta = \frac{\pi}{4} \) to see how it compares to the endpoints. ### Step 5: Conclusion From our evaluations: - \( P_n(0) = 1 \) - \( P_n\left(\frac{\pi}{2}\right) = 1 \) - \( P_n\left(\frac{\pi}{4}\right) \) approaches infinity as \( n \) decreases. Thus, the minimum value of \( P_n \) is: \[ \text{Minimum of } P_n = 1 \] ### Final Answer: The minimum of \( P_n \) is \( \boxed{1} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If P_n = cos^n theta+ sin^n theta then 2P_6-3P_4 + 1 =

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If S_n=cos^n theta+sin^n theta then find the value of 3S_4-2S_6

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

sin^2 n theta- sin^2 (n-1)theta= sin^2 theta where n is constant and n != 0,1

The general solution of sin^2 theta sec theta +sqrt3 tan theta=0 is (n in 1)

The value of I(n) =int_0^pi(sin ^2n theta)/(sin^2theta) d theta is (AA n in N)

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

If U_(n) = sin n theta*sec^(n)theta, V_(n) = cosntheta*sec^(n)theta for n= 0,1,2,… then V_(n) -V_(n-1)+U_(n-1)tantheta =

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section D (Linked Comprehension Type Questions)
  1. If P(n) = cos^(n) theta + sin^(n) theta 6P(10) -15P(8) + 10P(6) is e...

    Text Solution

    |

  2. If P(n) = cos^(n) theta + sin^(n) theta Maximum value of P(1000) wil...

    Text Solution

    |

  3. If P(n) = cos^(n) theta + sin^(n) theta where theta [0,pi/2], n (-in...

    Text Solution

    |

  4. Give a right angle triangle ABC with right angled at C. angleC=90^(@) ...

    Text Solution

    |

  5. Give a right angle triangle ABC with right angled at C. angleC=90^(@) ...

    Text Solution

    |

  6. Give a right angle triangle ABC with right angled at C. angleC=90^(@) ...

    Text Solution

    |

  7. From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c int R h...

    Text Solution

    |

  8. From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c R has ...

    Text Solution

    |

  9. From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c in R ha...

    Text Solution

    |

  10. In reducing a given trignometric equation to the standard form (sinx =...

    Text Solution

    |

  11. In reducing a given trignometric equation to the standard form (sinx =...

    Text Solution

    |

  12. In reducing a given trignometric equation to the standard form (sinx =...

    Text Solution

    |

  13. There are trignometrical equations that are nonstandard in aspect in t...

    Text Solution

    |

  14. The equation 8 cos^(4) x/2 sin^(2)x/2= x^(2) +1/x^(2), x int (0,4pi] h...

    Text Solution

    |

  15. The equation "cosec " x/2 + " cosec " y/2 + " cosec " z/2=6, where 0 ...

    Text Solution

    |

  16. There are trignometrical equations that are nonstandard in aspect in t...

    Text Solution

    |

  17. The equation 8 cos^(4) x/2 sin^(2)x/2= x^(2) +1/x^(2), x int (0,4pi] h...

    Text Solution

    |

  18. The equation "cosec " x/2 + " cosec " y/2 + " cosec " z/2=6, where 0 ...

    Text Solution

    |

  19. Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connect...

    Text Solution

    |

  20. Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connect...

    Text Solution

    |