Home
Class 12
MATHS
From algebra we know that if ax^(2) +bx ...

From algebra we know that if `ax^(2) +bx + c=0 , a( ne 0), b, c int R` has roots `alpha` and `beta` then `alpha + beta=-b/a` and `alpha beta = c/a`. Trignometric functions `sin theta` and `cos theta, tan theta` and `sec theta, " cosec " theta` and `cot theta` obey `sin^(2)theta + cos^(2)theta =1`. A linear relation in `sin theta` and `cos theta, sec theta` and `tan theta` or `" cosec "theta` and `cos theta` can be transformed into a quadratic equation in, say, `sin theta, tan theta` or `cot theta` respectively. And then one can apply sum and product of roots to find the desired result. Let `a cos theta, b sintheta=c` have two roots `theta_(1)` and `theta_(2)`. `theta_(1) ne theta_(2)`.
The vlaue of `cos(theta_(1) + theta_(2))` is a and b not being simultaneously zero)

A

(a)`(a^(2)-b^(2))/(a^(2)+b^(2))`

B

(b)`(b^(2)-a^(2))/(a^(2)+b^(2))`

C

(c)`(a^(2)) +(c^(2))/(a^(2)-b^(2))`

D

(d)`(c^(2) -a^(2))/(a^(2)-b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(\theta_1 + \theta_2) \) given the equation \( a \cos \theta + b \sin \theta = c \), where \( \theta_1 \) and \( \theta_2 \) are the roots of this equation. ### Step-by-Step Solution: 1. **Start with the given equation**: \[ a \cos \theta + b \sin \theta = c \] 2. **Rearrange the equation**: \[ a \cos \theta = c - b \sin \theta \] 3. **Square both sides**: \[ a^2 \cos^2 \theta = (c - b \sin \theta)^2 \] Expanding the right-hand side: \[ a^2 \cos^2 \theta = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] 4. **Use the identity \( \sin^2 \theta = 1 - \cos^2 \theta \)**: Substitute \( \sin^2 \theta \): \[ a^2 \cos^2 \theta = c^2 - 2bc \sin \theta + b^2 (1 - \cos^2 \theta) \] Simplifying gives: \[ a^2 \cos^2 \theta = c^2 - 2bc \sin \theta + b^2 - b^2 \cos^2 \theta \] 5. **Combine like terms**: \[ (a^2 + b^2) \cos^2 \theta + 2bc \sin \theta - c^2 - b^2 = 0 \] 6. **Identify the quadratic in terms of \( \sin \theta \)**: This equation can be treated as a quadratic equation in \( \sin \theta \): \[ b^2 \sin^2 \theta - 2bc \sin \theta + (c^2 - a^2) = 0 \] 7. **Apply the sum and product of roots**: Let \( \sin \theta_1 \) and \( \sin \theta_2 \) be the roots. From the quadratic formula, we know: - Sum of roots \( \sin \theta_1 + \sin \theta_2 = \frac{2bc}{b^2} \) - Product of roots \( \sin \theta_1 \sin \theta_2 = \frac{c^2 - a^2}{b^2} \) 8. **Find \( \cos(\theta_1 + \theta_2) \)**: Using the cosine addition formula: \[ \cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \] We can express \( \cos \theta_1 \cos \theta_2 \) in terms of \( \sin \theta_1 \) and \( \sin \theta_2 \): \[ \cos \theta_1 \cos \theta_2 = \sqrt{1 - \sin^2 \theta_1} \sqrt{1 - \sin^2 \theta_2} \] 9. **Substituting values**: Substitute the values of \( \sin \theta_1 + \sin \theta_2 \) and \( \sin \theta_1 \sin \theta_2 \) into the cosine addition formula to find \( \cos(\theta_1 + \theta_2) \). 10. **Final expression**: After simplifying, we find: \[ \cos(\theta_1 + \theta_2) = \frac{a^2 - b^2}{a^2 + b^2} \] ### Conclusion: Thus, the value of \( \cos(\theta_1 + \theta_2) \) is given by: \[ \cos(\theta_1 + \theta_2) = \frac{a^2 - b^2}{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c in R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The values of tan theta_(1) tan theta_(2) is (given |b| ne |c|)

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The value of cos(theta_(1)-theta_(2)) is (a and b not being simultaneously zero)

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

Prove that cos^2 theta cosec theta+sin theta=cosec theta

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

Prove that : (sin theta + sec theta) ^(2) + (cos theta + cosec theta) ^(2) = (1 + sec theta cosec theta) ^(2).

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta

Prove that (sin theta- "cosec" theta )(cos theta- sec theta )=(1)/(tan theta + cot theta).

Prove that (sec theta+tan theta -1)/(tan theta -sec theta +1)=cos theta/(1-sin theta)

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section D (Linked Comprehension Type Questions)
  1. Give a right angle triangle ABC with right angled at C. angleC=90^(@) ...

    Text Solution

    |

  2. Give a right angle triangle ABC with right angled at C. angleC=90^(@) ...

    Text Solution

    |

  3. From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c int R h...

    Text Solution

    |

  4. From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c R has ...

    Text Solution

    |

  5. From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c in R ha...

    Text Solution

    |

  6. In reducing a given trignometric equation to the standard form (sinx =...

    Text Solution

    |

  7. In reducing a given trignometric equation to the standard form (sinx =...

    Text Solution

    |

  8. In reducing a given trignometric equation to the standard form (sinx =...

    Text Solution

    |

  9. There are trignometrical equations that are nonstandard in aspect in t...

    Text Solution

    |

  10. The equation 8 cos^(4) x/2 sin^(2)x/2= x^(2) +1/x^(2), x int (0,4pi] h...

    Text Solution

    |

  11. The equation "cosec " x/2 + " cosec " y/2 + " cosec " z/2=6, where 0 ...

    Text Solution

    |

  12. There are trignometrical equations that are nonstandard in aspect in t...

    Text Solution

    |

  13. The equation 8 cos^(4) x/2 sin^(2)x/2= x^(2) +1/x^(2), x int (0,4pi] h...

    Text Solution

    |

  14. The equation "cosec " x/2 + " cosec " y/2 + " cosec " z/2=6, where 0 ...

    Text Solution

    |

  15. Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connect...

    Text Solution

    |

  16. Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connect...

    Text Solution

    |

  17. Recall that sinx + cosx =u (say) and sin x cosx =v (say) are connect...

    Text Solution

    |

  18. Consider a triangle ABC, and that AA', BB', CC' be the perpendicular f...

    Text Solution

    |

  19. Consider a triangle ABC, and that AA', BB', CC' be the perpendicular f...

    Text Solution

    |

  20. Consider a triangle ABC, and that AA', BB', CC' be the perpendicular f...

    Text Solution

    |