Home
Class 12
MATHS
If p, q, r be anY three. statements ST...

If p, q, r be anY three. statements
STATEMENT-1 : `pvv(q^^r)hArr(pvvq)^^(pvvr)`
and
STATEMENT-2 : `pvv(q^^r)=(pvvq)^^(pvvr)`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements given and check their validity using a truth table. ### Step 1: Define the Statements - **Statement 1**: \( p \lor (q \land r) \iff (p \lor q) \land (p \lor r) \) - **Statement 2**: \( p \lor (q \land r) = (p \lor q) \land (p \lor r) \) ### Step 2: Create a Truth Table We will create a truth table for the variables \( p, q, r \) which can take values True (T) or False (F). Since there are three variables, we will have \( 2^3 = 8 \) possible combinations of truth values. | p | q | r | \( q \land r \) | \( p \lor (q \land r) \) | \( p \lor q \) | \( p \lor r \) | \( (p \lor q) \land (p \lor r) \) | |-------|-------|-------|------------------|---------------------------|----------------|----------------|------------------------------------| | T | T | T | T | T | T | T | T | | T | T | F | F | T | T | T | T | | T | F | T | F | T | T | T | T | | T | F | F | F | T | T | T | T | | F | T | T | T | T | T | T | T | | F | T | F | F | F | T | F | F | | F | F | T | F | F | F | T | F | | F | F | F | F | F | F | F | F | ### Step 3: Evaluate the Columns - For \( q \land r \): True only when both \( q \) and \( r \) are True. - For \( p \lor (q \land r) \): True if either \( p \) is True or \( q \land r \) is True. - For \( p \lor q \): True if either \( p \) or \( q \) is True. - For \( p \lor r \): True if either \( p \) or \( r \) is True. - For \( (p \lor q) \land (p \lor r) \): True only when both \( p \lor q \) and \( p \lor r \) are True. ### Step 4: Compare the Results Now we will compare the columns for \( p \lor (q \land r) \) and \( (p \lor q) \land (p \lor r) \). From the truth table: - The column for \( p \lor (q \land r) \) is: T, T, T, T, T, F, F, F - The column for \( (p \lor q) \land (p \lor r) \) is: T, T, T, T, T, F, F, F ### Step 5: Conclusion Since both columns are identical for all combinations of truth values, we can conclude that: - **Statement 1 is true**: \( p \lor (q \land r) \iff (p \lor q) \land (p \lor r) \) - **Statement 2 is also true**: \( p \lor (q \land r) = (p \lor q) \land (p \lor r) \) Thus, both statements are valid.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-C) (Linked Comprehension Type Questions) (Comprehension-II)|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|3 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : [p^^(pvvq)]vv[q^^(qvvp)]=pvvq and STATEMENT-2 : p^^(qvvr)=(p^^q)vv(p^^r)

STATEMENT-1 : (p^^~q)^^(~p^^q) and STATEMENT-2 : (pvv~q) vv (~p ^^q)

STATEMENT-1 : (phArrq)=~ p hArr q and STATEMENT-2 : (phArrq) =~p hArr ~q

STATEMENT-1 : The inverse of (p^^~q) rArrr " is "~pvvqrArr ~r and STATEMENT-2 : ~(p^^q)=~pvv~q

(p^^~q) ^^ (~pvvq) is

STATEMENT-1 : ~(phArrq)=~phArrq=phArr~q and STATEMENT-2 : (phArrq)hArrr=p hArr(q hArrr)

If p, q and r anre 3 statements, then the truth value of ((-p vv q) ^^ r) implies p is

Negation of the statement (p ^^ r) -> (r vv q) is-

Negation of the statement ~ p to (q vv r) is

Negation of the statement pto(q^^r) is