Home
Class 12
MATHS
STATEMENT-1 : (phArrq)=~ p hArr q and...

STATEMENT-1 : `(phArrq)=~ p hArr q`
and
STATEMENT-2 : `(phArrq) =~p hArr ~q`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To determine the validity of the statements given in the question, we will construct truth tables for both statements and compare their results. ### Step 1: Define the Statements - **Statement 1**: \( (p \Leftrightarrow q) \equiv \neg p \Leftrightarrow q \) - **Statement 2**: \( (p \Leftrightarrow q) \equiv \neg p \Leftrightarrow \neg q \) ### Step 2: Create the Truth Table We will create a truth table for the variables \( p \) and \( q \) and evaluate both statements. | \( p \) | \( q \) | \( p \Leftrightarrow q \) | \( \neg p \) | \( \neg q \) | \( \neg p \Leftrightarrow q \) | \( \neg p \Leftrightarrow \neg q \) | |---------|---------|---------------------------|---------------|---------------|---------------------------------|-------------------------------------| | T | T | T | F | F | T | T | | T | F | F | F | T | T | F | | F | T | F | T | F | F | F | | F | F | T | T | T | T | T | ### Step 3: Evaluate Statement 1 - From the truth table, we see that: - \( p \Leftrightarrow q \) is true when both \( p \) and \( q \) are true or both are false. - \( \neg p \Leftrightarrow q \) is true when \( p \) is false and \( q \) is false, or when \( p \) is false and \( q \) is true. Comparing the columns for \( p \Leftrightarrow q \) and \( \neg p \Leftrightarrow q \): - They are not equal in all cases. Therefore, **Statement 1 is false**. ### Step 4: Evaluate Statement 2 - From the truth table, we see that: - \( p \Leftrightarrow q \) is true when both \( p \) and \( q \) are true or both are false. - \( \neg p \Leftrightarrow \neg q \) is true when both \( p \) and \( q \) are false or both are true. Comparing the columns for \( p \Leftrightarrow q \) and \( \neg p \Leftrightarrow \neg q \): - They are equal in all cases. Therefore, **Statement 2 is true**. ### Conclusion - **Statement 1** is false. - **Statement 2** is true. ### Final Answer - The correct answer is that Statement 1 is false and Statement 2 is true. ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-C) (Linked Comprehension Type Questions) (Comprehension-II)|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|3 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : ~(phArrq)=~phArrq=phArr~q and STATEMENT-2 : (phArrq)hArrr=p hArr(q hArrr)

STATEMENT-1 : ~(prArrq)=p^^~q and STATEMENT-2 : p rArr q = ~p vvq

STATEMENT-1 : (p rArr q) hArr (~q rArr~p) and STATEMENT-2 : p rArr q is logically equivalent to ~q rArr ~p

STATEMENT-1 : (p^^~q)^^(~p^^q) and STATEMENT-2 : (pvv~q) vv (~p ^^q)

STATEMENT-1 : p hArr ~q is true, when pis false and q is true. and STATEMENT-2 : p rArr ~q is true, when pis true and q is false, and -q ⇒ p is true, when q is false and p is true.

STATEMENT-1 : (p rArr ~q) ^^ (~q rArr q) is a contradication and STATEMENT-2 : The inverse of p rArr ~p " is " ~p rArr p

If p, q, r be anY three. statements STATEMENT-1 : pvv(q^^r)hArr(pvvq)^^(pvvr) and STATEMENT-2 : pvv(q^^r)=(pvvq)^^(pvvr)

STATEMENT-1 : The converse of p rArr q " is " q rArr p and STATEMENT-2 : The inverse of p rArr q " is " ~p rArr ~q

Let p be the statement "x is divisible b, 4" and q be the statement "x is divisible by 2". STATEMENT-1 : p hArr q and STATEMENT-2 : If x is divisible by 4, it must be divisible by 2 .

STATEMENT-1 : The inverse of (p^^~q) rArrr " is "~pvvqrArr ~r and STATEMENT-2 : ~(p^^q)=~pvv~q