Home
Class 12
MATHS
STATEMENT-1 : (p^^~q)^^(~p^^q) and ...

STATEMENT-1 : `(p^^~q)^^(~p^^q)`
and
STATEMENT-2 : `(pvv~q) vv (~p ^^q)`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To analyze the given statements, we will evaluate the truth values of both statements step by step. ### Step 1: Define the Statements - **Statement 1**: \((p \land \neg q) \land (\neg p \land q)\) - **Statement 2**: \((p \lor \neg q) \lor (\neg p \land q)\) ### Step 2: Create a Truth Table We will create a truth table to evaluate the truth values of both statements based on the possible values of \(p\) and \(q\). | \(p\) | \(q\) | \(\neg p\) | \(\neg q\) | \(p \land \neg q\) | \(\neg p \land q\) | Statement 1 | \(p \lor \neg q\) | Statement 2 | |-------|-------|------------|------------|---------------------|---------------------|--------------|--------------------|--------------| | T | T | F | F | F | F | F | T | T | | T | F | F | T | T | F | F | T | T | | F | T | T | F | F | T | F | T | T | | F | F | T | T | F | F | F | T | T | ### Step 3: Evaluate Statement 1 - For Statement 1: \((p \land \neg q) \land (\neg p \land q)\) - The conjunction is true only if both parts are true. - From the truth table, we see that the value of Statement 1 is **False** for all combinations of \(p\) and \(q\). ### Step 4: Evaluate Statement 2 - For Statement 2: \((p \lor \neg q) \lor (\neg p \land q)\) - The disjunction is true if at least one part is true. - From the truth table, we see that the value of Statement 2 is **True** for all combinations of \(p\) and \(q\). ### Conclusion - **Statement 1** is **False**. - **Statement 2** is **True**. ### Final Result Thus, we conclude that Statement 1 is not equivalent to Statement 2. ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-C) (Linked Comprehension Type Questions) (Comprehension-II)|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|3 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : ~(prArrq)=p^^~q and STATEMENT-2 : p rArr q = ~p vvq

STATEMENT-1 : [p^^(pvvq)]vv[q^^(qvvp)]=pvvq and STATEMENT-2 : p^^(qvvr)=(p^^q)vv(p^^r)

If p, q, r be anY three. statements STATEMENT-1 : pvv(q^^r)hArr(pvvq)^^(pvvr) and STATEMENT-2 : pvv(q^^r)=(pvvq)^^(pvvr)

STATEMENT-1 : (phArrq)=~ p hArr q and STATEMENT-2 : (phArrq) =~p hArr ~q

(p ^^ ~q) ^^ (~p vv q) is

STATEMENT-1 : (p rArr q) hArr (~q rArr~p) and STATEMENT-2 : p rArr q is logically equivalent to ~q rArr ~p

STATEMENT-1 : (p rArr ~q) ^^ (~q rArr q) is a contradication and STATEMENT-2 : The inverse of p rArr ~p " is " ~p rArr p

STATEMENT-1 : The inverse of (p^^~q) rArrr " is "~pvvqrArr ~r and STATEMENT-2 : ~(p^^q)=~pvv~q

p^^(~p vv~q)^^q-= ?

Show that ~(p harr q) -= ( p ^^ ~q) vv(~p ^^q) .