Home
Class 12
MATHS
STATEMENT-1 : [p^^(pvvq)]vv[q^^(qvvp)]=p...

STATEMENT-1 : `[p^^(pvvq)]vv[q^^(qvvp)]=pvvq`
and
STATEMENT-2 : `p^^(qvvr)=(p^^q)vv(p^^r)`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-C) (Linked Comprehension Type Questions) (Comprehension-II)|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|3 Videos

Similar Questions

Explore conceptually related problems

If p, q, r be anY three. statements STATEMENT-1 : pvv(q^^r)hArr(pvvq)^^(pvvr) and STATEMENT-2 : pvv(q^^r)=(pvvq)^^(pvvr)

STATEMENT-1 : (p^^~q)^^(~p^^q) and STATEMENT-2 : (pvv~q) vv (~p ^^q)

p^^(~p vv~q)^^q-= ?

STATEMENT-1 : The inverse of (p^^~q) rArrr " is "~pvvqrArr ~r and STATEMENT-2 : ~(p^^q)=~pvv~q

~(pvvq)vv(~p^^q) is equivalent to

(p^^~q) ^^ (~pvvq) is

(p ^^ ~q) ^^ (~p vv q) is

Show that ~(p harr q) -= ( p ^^ ~q) vv(~p ^^q) .

((p^^q)vv(pvv~q))^^(~p^^~q)) is equivalent to (A) ~p^^~q (B) p^^~q (C) pvv~q (D) ~pvvq

The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a) (~p^^~q)^^r (b) ~p vv r (c) (p^^r)^^~q (d) (p^^~q)vvr