Home
Class 12
MATHS
STATEMENT-1 : ~(phArrq)=~phArrq=phArr~q ...

STATEMENT-1 : `~(phArrq)=~phArrq=phArr~q`
and
STATEMENT-2 : `(phArrq)hArrr=p hArr(q hArrr)`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To determine the truth of the statements provided, we will analyze each statement step by step using truth tables. ### Statement 1: **`~(P ↔ Q) = ~P ↔ Q = P ↔ ~Q`** 1. **Define Variables**: Let P and Q be the two propositions. We will evaluate the truth values of P, Q, ~P, and ~Q. 2. **Truth Table Setup**: - Create a truth table with columns for P, Q, ~P, ~Q, P ↔ Q, ~P ↔ Q, and P ↔ ~Q. | P | Q | ~P | ~Q | P ↔ Q | ~P ↔ Q | P ↔ ~Q | |-------|-------|-------|-------|-------|---------|---------| | T | T | F | F | T | F | F | | T | F | F | T | F | T | T | | F | T | T | F | F | F | T | | F | F | T | T | T | T | F | 3. **Evaluate Negation**: - Now, evaluate the negation of P ↔ Q: - ~ (P ↔ Q) = F, T, T, F (from the column of P ↔ Q). 4. **Check Equivalence**: - Compare the values of ~ (P ↔ Q), ~P ↔ Q, and P ↔ ~Q: - ~ (P ↔ Q) = F, T, T, F - ~P ↔ Q = F, T, T, F - P ↔ ~Q = F, T, T, F 5. **Conclusion for Statement 1**: - Since all three expressions yield the same truth values, Statement 1 is **True**. ### Statement 2: **`(P ↔ Q) ↔ R = P ↔ (Q ↔ R)`** 1. **Define Variables**: Let P, Q, and R be the three propositions. We will evaluate their truth values. 2. **Truth Table Setup**: - Create a truth table with columns for P, Q, R, P ↔ Q, Q ↔ R, and (P ↔ Q) ↔ R, P ↔ (Q ↔ R). | P | Q | R | P ↔ Q | Q ↔ R | (P ↔ Q) ↔ R | P ↔ (Q ↔ R) | |-------|-------|-------|-------|-------|--------------|--------------| | T | T | T | T | T | T | T | | T | T | F | T | F | F | F | | T | F | T | F | F | F | F | | T | F | F | F | T | T | T | | F | T | T | F | T | T | T | | F | T | F | F | F | F | F | | F | F | T | T | F | F | F | | F | F | F | T | T | T | T | 3. **Check Equivalence**: - Compare the values of (P ↔ Q) ↔ R and P ↔ (Q ↔ R): - (P ↔ Q) ↔ R = T, F, F, T, T, F, F, T - P ↔ (Q ↔ R) = T, F, F, T, T, F, F, T 4. **Conclusion for Statement 2**: - Since both expressions yield the same truth values, Statement 2 is **True**. ### Final Conclusion: - Statement 1 is **True**. - Statement 2 is **True**.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-C) (Linked Comprehension Type Questions) (Comprehension-II)|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|3 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : (phArrq)=~ p hArr q and STATEMENT-2 : (phArrq) =~p hArr ~q

STATEMENT-1 : ~(prArrq)=p^^~q and STATEMENT-2 : p rArr q = ~p vvq

STATEMENT-1 : (p^^~q)^^(~p^^q) and STATEMENT-2 : (pvv~q) vv (~p ^^q)

STATEMENT-1 : (p rArr q) hArr (~q rArr~p) and STATEMENT-2 : p rArr q is logically equivalent to ~q rArr ~p

If p, q, r be anY three. statements STATEMENT-1 : pvv(q^^r)hArr(pvvq)^^(pvvr) and STATEMENT-2 : pvv(q^^r)=(pvvq)^^(pvvr)

Let p, q and r be three statements. Consider two compound statements S_(1):(prArr q)rArr r -= p rArr (q rArr r) S_(2):(p hArr q)hArrr -=phArr (q hArr r) State in order, whether S_(1), S_(2) are true of false. (where, T represents true F represents false)

Let p, q and r be three statements. Consider two compound statements S_(1):(prArr q)rArr r -= p rArr (p rArr r) S_(2):(p hArr q)hArrr -=phArr (q hArr r) State in order, whether S_(1), S_(2) are true of false. (where, T represents true F represents false)

STATEMENT-1 : p hArr ~q is true, when pis false and q is true. and STATEMENT-2 : p rArr ~q is true, when pis true and q is false, and -q ⇒ p is true, when q is false and p is true.

STATEMENT-1 : The inverse of (p^^~q) rArrr " is "~pvvqrArr ~r and STATEMENT-2 : ~(p^^q)=~pvv~q

STATEMENT-1 : The converse of p rArr q " is " q rArr p and STATEMENT-2 : The inverse of p rArr q " is " ~p rArr ~q