Home
Class 12
MATHS
If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2),...

If `x=(1-t^2)/(1+t^2)` and `y=(2t)/(1+t^2)`, prove that `dy/dx+x/y=0`

Text Solution

AI Generated Solution

To prove that \(\frac{dy}{dx} + \frac{x}{y} = 0\) given \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2t}{1 + t^2}\), we will follow these steps: ### Step 1: Find \(\frac{dy}{dt}\) Using the quotient rule, we differentiate \(y\) with respect to \(t\): \[ y = \frac{2t}{1 + t^2} \] Let \(u = 2t\) and \(v = 1 + t^2\). Then, ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If x=sin^(-1)((2t)/(1+t^2)) and y= tan^(-1)((2t)/(1-t^2)),t > 1 . Prove that dy/dx=-1

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

If x=sin^(-1)[(2t)/(1+t^2)]'and'y=tan^(-1)((2t)/(1-t^2)), prove that dy/dx=1'.

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .