Home
Class 12
MATHS
If lim(x to 0) ("sin" 2x + a "sin" x)/(...

If `lim_(x to 0) ("sin" 2x + a "sin" x)/(x^(3)) =b` (finite), then `(ab)^(2)` equals…..

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

lim_(x to 0) (sin x + cos 3x)^(2//x) =

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

3. lim_(x rarr0)(sin x sin^(-1)x)/(x^(2))

lim_(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is