Home
Class 12
MATHS
f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi...

`f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):}`continuous function `AA x in [ 0,pi] " then " 5(a/b)^(2)` equals ....

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous across the specified intervals. The function is defined piecewise as follows: \[ f(x) = \begin{cases} x + a\sqrt{2}\sin x & \text{for } 0 \leq x < \frac{\pi}{4} \\ 2x \cot x + b & \text{for } \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2x - b \sin x & \text{for } \frac{\pi}{2} < x \leq \pi \end{cases} \] ### Step 1: Ensure continuity at \( x = \frac{\pi}{4} \) To ensure continuity at \( x = \frac{\pi}{4} \), we set the left-hand limit equal to the right-hand limit: \[ f\left(\frac{\pi}{4}\right) \text{ from the first piece} = f\left(\frac{\pi}{4}\right) \text{ from the second piece} \] Calculating \( f\left(\frac{\pi}{4}\right) \) from the first piece: \[ f\left(\frac{\pi}{4}\right) = \frac{\pi}{4} + a\sqrt{2}\sin\left(\frac{\pi}{4}\right) = \frac{\pi}{4} + a\sqrt{2} \cdot \frac{1}{\sqrt{2}} = \frac{\pi}{4} + a \] Calculating \( f\left(\frac{\pi}{4}\right) \) from the second piece: \[ f\left(\frac{\pi}{4}\right) = 2\left(\frac{\pi}{4}\right) \cot\left(\frac{\pi}{4}\right) + b = \frac{\pi}{2} + b \] Setting these equal gives us: \[ \frac{\pi}{4} + a = \frac{\pi}{2} + b \] Rearranging this, we get: \[ a - b = \frac{\pi}{4} \quad \text{(Equation 1)} \] ### Step 2: Ensure continuity at \( x = \frac{\pi}{2} \) Next, we ensure continuity at \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) \text{ from the second piece} = f\left(\frac{\pi}{2}\right) \text{ from the third piece} \] Calculating \( f\left(\frac{\pi}{2}\right) \) from the second piece: \[ f\left(\frac{\pi}{2}\right) = 2\left(\frac{\pi}{2}\right) \cot\left(\frac{\pi}{2}\right) + b = 0 + b = b \] Calculating \( f\left(\frac{\pi}{2}\right) \) from the third piece: \[ f\left(\frac{\pi}{2}\right) = a \cos(2 \cdot \frac{\pi}{2}) - b \sin\left(\frac{\pi}{2}\right) = a \cdot (-1) - b = -a - b \] Setting these equal gives us: \[ b = -a - b \] Rearranging this, we get: \[ 2b = -a \quad \text{(Equation 2)} \] ### Step 3: Solve the equations Now we have two equations: 1. \( a - b = \frac{\pi}{4} \) 2. \( 2b = -a \) From Equation 2, we can express \( a \) in terms of \( b \): \[ a = -2b \] Substituting this into Equation 1 gives: \[ -2b - b = \frac{\pi}{4} \] \[ -3b = \frac{\pi}{4} \] \[ b = -\frac{\pi}{12} \] Now substituting \( b \) back into the expression for \( a \): \[ a = -2\left(-\frac{\pi}{12}\right) = \frac{\pi}{6} \] ### Step 4: Calculate \( 5\left(\frac{a}{b}\right)^2 \) Now we can calculate \( 5\left(\frac{a}{b}\right)^2 \): \[ \frac{a}{b} = \frac{\frac{\pi}{6}}{-\frac{\pi}{12}} = -2 \] Thus, \[ 5\left(\frac{a}{b}\right)^2 = 5 \cdot (-2)^2 = 5 \cdot 4 = 20 \] ### Final Answer The value of \( 5\left(\frac{a}{b}\right)^2 \) is \( \boxed{20} \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are

If 0 le x le pi/2 then

If 0 lt x lt 2 pi and |cos x| le sin x , then

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

Solve the equation sqrt3 cos x + sin x =1 for - 2pi lt x le 2pi.

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):} is continuous at x= pi/2 , then