Home
Class 12
MATHS
find the value of lim(x to oo) 48x (pi/4...

find the value of `lim_(x to oo) 48x (pi/4 - tan^(-1) ((x+1)/(x+2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to \infty} 48x \left( \frac{\pi}{4} - \tan^{-1} \left( \frac{x+1}{x+2} \right) \right), \] we can follow these steps: ### Step 1: Rewrite \(\frac{\pi}{4}\) as \(\tan^{-1}(1)\) We know that \(\tan^{-1}(1) = \frac{\pi}{4}\). Thus, we can rewrite the limit as: \[ \lim_{x \to \infty} 48x \left( \tan^{-1}(1) - \tan^{-1} \left( \frac{x+1}{x+2} \right) \right). \] ### Step 2: Use the formula for the difference of arctangents Using the formula for the difference of arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1} \left( \frac{a - b}{1 + ab} \right), \] we set \(a = 1\) and \(b = \frac{x+1}{x+2}\). This gives us: \[ \tan^{-1}(1) - \tan^{-1} \left( \frac{x+1}{x+2} \right) = \tan^{-1} \left( \frac{1 - \frac{x+1}{x+2}}{1 + 1 \cdot \frac{x+1}{x+2}} \right). \] ### Step 3: Simplify the expression inside the arctangent Now we simplify the expression: 1. The numerator becomes: \[ 1 - \frac{x+1}{x+2} = \frac{(x+2) - (x+1)}{x+2} = \frac{1}{x+2}. \] 2. The denominator becomes: \[ 1 + \frac{x+1}{x+2} = \frac{(x+2) + (x+1)}{x+2} = \frac{2x + 3}{x + 2}. \] Thus, we have: \[ \tan^{-1} \left( \frac{\frac{1}{x+2}}{\frac{2x + 3}{x + 2}} \right) = \tan^{-1} \left( \frac{1}{2x + 3} \right). \] ### Step 4: Substitute back into the limit Now substituting back into the limit, we have: \[ \lim_{x \to \infty} 48x \tan^{-1} \left( \frac{1}{2x + 3} \right). \] ### Step 5: Use the limit property of \(\tan^{-1}\) As \(x \to \infty\), \(\frac{1}{2x + 3} \to 0\). We can use the limit property: \[ \lim_{u \to 0} \frac{\tan^{-1}(u)}{u} = 1. \] Thus, we can rewrite: \[ \tan^{-1} \left( \frac{1}{2x + 3} \right) \sim \frac{1}{2x + 3} \text{ as } x \to \infty. \] ### Step 6: Substitute and simplify Now we substitute this back into our limit: \[ \lim_{x \to \infty} 48x \cdot \frac{1}{2x + 3} = \lim_{x \to \infty} \frac{48x}{2x + 3}. \] ### Step 7: Divide numerator and denominator by \(x\) Dividing both the numerator and denominator by \(x\): \[ \lim_{x \to \infty} \frac{48}{2 + \frac{3}{x}}. \] ### Step 8: Evaluate the limit As \(x \to \infty\), \(\frac{3}{x} \to 0\): \[ \lim_{x \to \infty} \frac{48}{2 + 0} = \frac{48}{2} = 24. \] ### Final Answer Thus, the value of the limit is: \[ \boxed{24}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim _(x to oo) (x+(1)/(x))e ^(1//x)-x.

The value of lim_(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

Find the value of lim_(x->oo)(2-1/x+4/x^2)

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

Evaluate lim_(x to oo) x("tan"^(-1)(x+1)/(x+4)-(pi)/(4)).

If lim_(x -> oo) 4x ( pi/4 - tan^-1 ((x+1) / (x+2))) = y^2 + 4y + 5 then y can be equal to

The value of lim_(x to oo ) (x-x^(2)log_(e)(1+(1)/(x))) is _______.

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

Evaluate lim_(x to (pi)/(4)) (1 - tanx)/(x - (pi)/(4))

Evaluate: lim_(x->oo)x(tan^(-1)((x+1)/(x+4))-pi/4)