Home
Class 12
MATHS
If int(3x ^(3)-17)e^(2x)dx={Ax^(3)+Bx^(2...

If `int(3x ^(3)-17)e^(2x)dx={Ax^(3)+Bx^(2)+Cx+D}e^(2x)+k` then

A

`3A+B=0`

B

`B+C=0`

C

`B-D=0`

D

`A+B+C+D=-(71)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (3x^3 - 17)e^{2x} \, dx \) and express it in the form \( \{Ax^3 + Bx^2 + Cx + D\} e^{2x} + k \), we will use integration by parts multiple times. ### Step 1: Set Up the Integral We start with the integral: \[ I = \int (3x^3 - 17)e^{2x} \, dx \] ### Step 2: Split the Integral We can split the integral into two parts: \[ I = \int 3x^3 e^{2x} \, dx - 17 \int e^{2x} \, dx \] ### Step 3: Solve the Second Integral The second integral is straightforward: \[ \int e^{2x} \, dx = \frac{e^{2x}}{2} + C \] Thus, \[ -17 \int e^{2x} \, dx = -\frac{17}{2} e^{2x} \] ### Step 4: Solve the First Integral Using Integration by Parts For the first integral \( \int 3x^3 e^{2x} \, dx \), we will apply integration by parts. Let: - \( u = x^3 \) (then \( du = 3x^2 \, dx \)) - \( dv = e^{2x} \, dx \) (then \( v = \frac{e^{2x}}{2} \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int 3x^3 e^{2x} \, dx = 3 \left( x^3 \cdot \frac{e^{2x}}{2} - \int \frac{e^{2x}}{2} \cdot 3x^2 \, dx \right) \] This simplifies to: \[ \frac{3}{2} x^3 e^{2x} - \frac{3}{2} \int x^2 e^{2x} \, dx \] ### Step 5: Solve the New Integral Now we need to solve \( \int x^2 e^{2x} \, dx \) using integration by parts again: Let: - \( u = x^2 \) (then \( du = 2x \, dx \)) - \( dv = e^{2x} \, dx \) (then \( v = \frac{e^{2x}}{2} \)) Applying integration by parts again: \[ \int x^2 e^{2x} \, dx = x^2 \cdot \frac{e^{2x}}{2} - \int \frac{e^{2x}}{2} \cdot 2x \, dx \] This simplifies to: \[ \frac{1}{2} x^2 e^{2x} - \int x e^{2x} \, dx \] ### Step 6: Solve the Last Integral Now we need to solve \( \int x e^{2x} \, dx \) using integration by parts one more time: Let: - \( u = x \) (then \( du = dx \)) - \( dv = e^{2x} \, dx \) (then \( v = \frac{e^{2x}}{2} \)) Applying integration by parts: \[ \int x e^{2x} \, dx = x \cdot \frac{e^{2x}}{2} - \int \frac{e^{2x}}{2} \, dx \] This simplifies to: \[ \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \] ### Step 7: Combine All Parts Now we can combine all the parts together: \[ I = \left( \frac{3}{2} x^3 e^{2x} - \frac{3}{2} \left( \frac{1}{2} x^2 e^{2x} - \left( \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) \right) - \frac{17}{2} e^{2x} \right) + C \] ### Step 8: Factor Out \( e^{2x} \) After simplifying, we can factor out \( e^{2x} \): \[ I = e^{2x} \left( \frac{3}{2} x^3 - \frac{3}{4} x^2 + \frac{3}{4} x - \frac{17}{2} \right) + C \] ### Step 9: Compare Coefficients Now we can compare coefficients with the form \( \{Ax^3 + Bx^2 + Cx + D\} e^{2x} + k \): - \( A = \frac{3}{2} \) - \( B = -\frac{3}{4} \) - \( C = \frac{3}{4} \) - \( D = -\frac{17}{2} \) ### Step 10: Solve for Relationships From the problem, we have the following relationships: 1. \( 3A + B = 0 \) 2. \( B + C = 0 \) 3. \( B - D = 0 \) 4. \( A + B + C + D = -\frac{17}{8} \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion-Reason Type Questions|15 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int e^(x^(3))x^(2)dx=?

int (x-2)/(x^(3)).e^(x) dx

int((3x-2)/(x)+e^(x)) dx

int1/(1+3e^x+2e^(2x))dx

int (e^(x)dx)/(e^(2x)+4e^(x)+3)

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int (sin 2x- 4e^(3x))dx

int_0^1 e^(2-3x)dx

If int x e^(kx^(2)) dx = ( 1)/( 4) e^(2x^(2)) + C , then the value of k is

int (3x^2+e^x) dx

AAKASH INSTITUTE ENGLISH-INTEGRALS-Objective Type Questions (More than one answer)
  1. int(dx)/(5+4cosx)=lambdatan^(-1)(mtan.(x)/(2))+C then

    Text Solution

    |

  2. The value of the integral int e^(sin^(2)x)(cos x+cos^(3)x)sin x dx is

    Text Solution

    |

  3. If int(3x ^(3)-17)e^(2x)dx={Ax^(3)+Bx^(2)+Cx+D}e^(2x)+k then

    Text Solution

    |

  4. The relation int(sin2x+cos2x)=(1)/(sqrt(2))sin(2x-a)+c is true for

    Text Solution

    |

  5. The value of lambda for which int(4x^(3)+lambda4^(x))/(4^(x)+x^(4))dx=...

    Text Solution

    |

  6. If primitive of sqrt((1+secx)) is 2fog(x)+c, then

    Text Solution

    |

  7. Let f(0)=f'(0)=0 and f^(primeprime)(x)=sec^4x+4 then find f(x)

    Text Solution

    |

  8. If intsec2x dx=f{g(x)}+c then

    Text Solution

    |

  9. If inttan^(4)xdx=Atan^(3)x+Btanx+phi(x), then

    Text Solution

    |

  10. If primitive of sin (log x) is f(x)*{sin g(x)- cos h(x)}+c, (c being c...

    Text Solution

    |

  11. If int cos^(-1)x+cos^(-1)sqrt(1-x^2) dx= Ax+f(x)sin^(-1)x-2sqrt(1-x^2)...

    Text Solution

    |

  12. If int (3x+4)/(x^3-2x-4) \ dx = log|x-2| + k logf(x) + c, then (i) f...

    Text Solution

    |

  13. A primitive of sin 6x is

    Text Solution

    |

  14. If int(sinx)/(sin(x-a))dx=f(x)sina+g(x)cosa+c, then

    Text Solution

    |

  15. If f(x)=int1^x(lnt)/(1+t)dt where x>0, then the values of of x satisfy...

    Text Solution

    |

  16. The value of int0^oo(x dx)/((1+x)(1+x^2)) is equal to

    Text Solution

    |

  17. If f(x)=int0^x(sint)/t dt ,x >0, then

    Text Solution

    |

  18. The value of int0^1(2x^2+3x+3)/((x+1)(x^2+2x+2))dx is

    Text Solution

    |

  19. inta^b sgn(x)dx equals (a,b in R)

    Text Solution

    |

  20. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |