Home
Class 12
MATHS
Reduction formulas can be used to comput...

Reduction formulas can be used to compute integrals of higher power of `sinx,cosx,tanx` etc.
`inttan^(6)xdx=(1)/(5)tan^(5)x+Atan^(3)x+tanx-x+C` then

A

`A=(1)/(3)`

B

`A=(2)/(3)`

C

`A=-(2)/(3)`

D

`A=-(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^6 x \, dx \) and find the value of \( A \) in the expression \[ \int \tan^6 x \, dx = \frac{1}{5} \tan^5 x + A \tan^3 x + \tan x - x + C, \] we can follow these steps: ### Step 1: Break down the integral We start by rewriting \( \tan^6 x \) as \( \tan^4 x \cdot \tan^2 x \). This gives us: \[ \int \tan^6 x \, dx = \int \tan^4 x \cdot \tan^2 x \, dx. \] ### Step 2: Substitute \( \tan^2 x \) Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can express \( \tan^2 x \) in terms of \( \sec^2 x \): \[ \tan^6 x = \tan^4 x (\sec^2 x - 1). \] Substituting this into the integral, we have: \[ \int \tan^6 x \, dx = \int \tan^4 x \sec^2 x \, dx - \int \tan^4 x \, dx. \] ### Step 3: Solve the first integral For the first integral, we can use the substitution \( t = \tan x \), which gives us \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} \). Thus, we rewrite the integral: \[ \int \tan^4 x \sec^2 x \, dx = \int t^4 \, dt = \frac{t^5}{5} + C = \frac{\tan^5 x}{5} + C. \] ### Step 4: Solve the second integral For the second integral, we again use the substitution \( t = \tan x \): \[ \int \tan^4 x \, dx = \int t^4 \cdot \frac{dt}{\sec^2 x} = \int t^4 \cdot \frac{dt}{1 + t^2}. \] This integral can be solved using polynomial long division or other techniques, but for our purposes, we can express it as: \[ \int t^4 \, dt = \frac{t^5}{5} - \int t^2 \, dt = \frac{t^5}{5} - \frac{t^3}{3} + C = \frac{\tan^5 x}{5} - \frac{\tan^3 x}{3} + C. \] ### Step 5: Combine results Now we can combine the results of both integrals: \[ \int \tan^6 x \, dx = \left( \frac{\tan^5 x}{5} \right) - \left( \frac{\tan^5 x}{5} - \frac{\tan^3 x}{3} \right) + \tan x - x + C. \] This simplifies to: \[ \int \tan^6 x \, dx = \frac{1}{5} \tan^5 x + \frac{1}{3} \tan^3 x + \tan x - x + C. \] ### Step 6: Identify \( A \) Comparing with the given expression: \[ \int \tan^6 x \, dx = \frac{1}{5} \tan^5 x + A \tan^3 x + \tan x - x + C, \] we find that \( A = \frac{1}{3} \). ### Final Answer Thus, the value of \( A \) is: \[ A = \frac{1}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion-Reason Type Questions|15 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (More than one answer)|32 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Reduction formulas can be used to compute integrals of higher power of sinx,cosx,tanx etc. intsec^(6)xdx=(1)/(5)tan^(5)x+Atan^(3)x+tanx+C then

Reduction formulas can be used to compute integrals of higher power of sinx,cosx,tanx etc. intsin^(5)xdx=-(1)/(5)sin^(4)xcosx+Asin^(2)xcosx-(8)/(15)cosx+C then A equals

If inttan^(4)xdx=Atan^(3)x+Btanx+phi(x) , then

Prove that: inttan^n xdx=1/(n-1)tan^(n-1)x-inttan^(n-2)xdx

If =int(tan^(5)dx=Atan^(4)x-1/2tan^(2)x+B"ln"|secx|+C) then

If y=(tanx)/(tan3x), then

If 1/6 sinx, cosx, tan x are in G.P. then x=,

Evaluate int (tanx+tan^3x)/(1+tan^3x)dx

"If " int(5tanx)/(tanx-2)dx=x+a " In"(sinx-2cosx)+k " then " a=

int_0^(pi/4) (tanx-x)tan^2xdx