Home
Class 12
MATHS
Reduction formulas can be used to comput...

Reduction formulas can be used to compute integrals of higher power of `sinx,cosx,tanx` etc.
`intsec^(6)xdx=(1)/(5)tan^(5)x+Atan^(3)x+tanx+C` then

A

`A=(1)/(3)`

B

`A=(2)/(3)`

C

`A=-(1)/(3)`

D

`A=-(2)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
2/3
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion-Reason Type Questions|15 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (More than one answer)|32 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Reduction formulas can be used to compute integrals of higher power of sinx,cosx,tanx etc. inttan^(6)xdx=(1)/(5)tan^(5)x+Atan^(3)x+tanx-x+C then

Reduction formulas can be used to compute integrals of higher power of sinx,cosx,tanx etc. intsin^(5)xdx=-(1)/(5)sin^(4)xcosx+Asin^(2)xcosx-(8)/(15)cosx+C then A equals

If intcos^(7) xdx =Asin^(7)x+Bsin^(5)x+C sin^(3)x+sinx+k , then

If =int(tan^(5)dx=Atan^(4)x-1/2tan^(2)x+B"ln"|secx|+C) then

If 1/6 sinx, cosx, tan x are in G.P. then x=,

int tanx.tan2x.tan3xdx =

If sinx, cosx, tanx are in G.P., then cot^6x-cot^2x= (A) 0 (B) -1 (C) 1 (D) depends on x

Evaluate the following integrals : (i) int tan^(-5)x sec^(6)xdx (ii) intcosec^(8)xcot^(3)xdx

Integral of the form int[xf\'(x)+f(x)]dx can be evaluated by using integration by parts in first integral and leaving second integral as it is.Now answer the question: int(x+sinx)/(1+cosx)dx= (A) xtanx/2+c (B) x/2tanx/2+c (C) x/2tanx+c (D) none of these

Evaluate: int((3tan^2x+2)sec^2x)/((tan^3x+2tanx+5))dx