Home
Class 12
MATHS
If int(pi//6)^(pi//3)sinxdx=kint(pi//6)^...

If `int_(pi//6)^(pi//3)sinxdx=kint_(pi//6)^(pi//3)cosxdx`, then `k` is _______.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Subjective Type Questions|15 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion-Reason Type Questions|15 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3) sin(3x)dx=

int_(pi//6)^(pi//2) cos x dx

Evaluate int_(pi//6)^(pi//4)cosecxdx

"y=int_{pi/3}^{pi/2}sinxdx

Evaluate: int_(0)^(pi//2)sinxdx

int_0^(pi/2) (1+sinx)^3cosxdx

L e tI_1=int_(pi/6)^(pi/3)(sinx)/x dx ,I_2=int_(pi/6)^(pi/3)sin(sinx)/(sinx)dx ,I_3=int_(pi/6)^(pi/3)sin(tanx)/(tanx)dx Then arrange in the decreasing order in which values I_1,I_2,I_3 lie.

int_(0)^(pi//6) cos x cos 3x dx

int_0^(pi/2) sqrt(cosx)sinxdx

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2