Home
Class 12
CHEMISTRY
DeltaG° for the following reaction: I...

`DeltaG°` for the following reaction:
`I_2(s) + H_2S(g) rarr 2HI(g) + S(s)` at 298 K is,
Given that `Delta_fG°HI(g) = 1.8 kJ mol^-1`. `Delta_fG°H_2S(g) = 33.8 kJ` `mol^-1`.

A

30200 kJ

B

-30.2 kJ

C

-30200J

D

-302 J

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard Gibbs free energy change (ΔG°) for the reaction: \[ \text{I}_2(s) + \text{H}_2\text{S}(g) \rightarrow 2\text{HI}(g) + \text{S}(s) \] at 298 K, we can use the following formula: \[ \Delta G° = \sum \Delta_f G° \text{(products)} - \sum \Delta_f G° \text{(reactants)} \] ### Step 1: Identify the components of the reaction - **Products**: 2 moles of HI(g) and 1 mole of S(s) - **Reactants**: 1 mole of I2(s) and 1 mole of H2S(g) ### Step 2: Write down the standard Gibbs free energy of formation values - Given: - \(\Delta_f G° \text{(HI)} = 1.8 \, \text{kJ/mol}\) - \(\Delta_f G° \text{(H2S)} = 33.8 \, \text{kJ/mol}\) - \(\Delta_f G° \text{(S)} = 0 \, \text{kJ/mol}\) (since sulfur is in its standard state) - \(\Delta_f G° \text{(I2)} = 0 \, \text{kJ/mol}\) (since iodine is in its standard state) ### Step 3: Calculate the Gibbs free energy for products \[ \text{For products: } \Delta_f G° \text{(products)} = 2 \times \Delta_f G° \text{(HI)} + \Delta_f G° \text{(S)} \] \[ = 2 \times 1.8 \, \text{kJ/mol} + 0 \, \text{kJ/mol} = 3.6 \, \text{kJ/mol} \] ### Step 4: Calculate the Gibbs free energy for reactants \[ \text{For reactants: } \Delta_f G° \text{(reactants)} = \Delta_f G° \text{(I2)} + \Delta_f G° \text{(H2S)} \] \[ = 0 \, \text{kJ/mol} + 33.8 \, \text{kJ/mol} = 33.8 \, \text{kJ/mol} \] ### Step 5: Substitute the values into the Gibbs free energy formula \[ \Delta G° = \Delta_f G° \text{(products)} - \Delta_f G° \text{(reactants)} \] \[ = 3.6 \, \text{kJ/mol} - 33.8 \, \text{kJ/mol} \] \[ = -30.2 \, \text{kJ/mol} \] ### Final Answer Thus, the standard Gibbs free energy change (ΔG°) for the reaction is: \[ \Delta G° = -30.2 \, \text{kJ/mol} \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 10

    AAKASH INSTITUTE ENGLISH|Exercise Example|30 Videos
  • MOCK TEST 12

    AAKASH INSTITUTE ENGLISH|Exercise Exercise|14 Videos

Similar Questions

Explore conceptually related problems

Calculate DeltaG^@ for the reaction 2HCl (g) + F_2(g) to 2HF (g) + Cl_2(g) at 25^@C at Given : Delta_f G^@ [ HCl (g)] = -95.30 kJ mol^(-1) . Delta_fG^@ [ HF(g)] = -273 kJ mol^(-1) . Also calculate the equilibrium constant the reacton at 25^@C . Given, gas constant R = 8.314 JK^(-1) mol^(-1) .

Calculate the standard free energy change for the following reaction at 27^@C . H_2(g) + I_2(g) to 2HI(g) , DeltaH^@ = + 51.9 kJ [Given : DeltaS_(H_2)^@ = 130.6 JK^(-1) mol^(-1) DeltaS_(I_2)^@ = 116.7 JK^(-1) mol^(-1) DeltaS_(HI)^@ = 206.3 JK^(-1) mol^(-1)] . Predict whether the reaction is feasible at 27°C or not.

Calculate the entropy change for the following reaction H_(2)(g) +CI_(2)(g) rarr 2HCI (g) at 298 K Given S^(Theta)H_(2) = 131 J K^(-1) mol^(-1), S^(Theta)CI_(2) = 233 J K^(-1) mol^(-1) , and S^(Theta) HCI = 187 J K^(-1) mol^(-1)

Calculate the entropy change for the following reaction H_(2)(g) +CI_(2)(g) rarr 2HCI (g) at 298 K Given S^(Theta)H_(2) = 131 J K^(-1) mol^(-1), S^(Theta)CI_(2) = 233 J K^(-1) mol^(-1) , and S^(Theta) HCI = 187 J K^(-1) mol^(-1)

Calculate the standard free energy change for the following reaction Zn(s) + Cu^(2+)(aq) to Zn^(2+) (aq) + Cu(s) Given : Delta_fG^@ [Cu^(2+)(aq)] = 65.0kJ mol^(-1) Delta_f G^@ [ Zn^(2+) (aq)] = -147.2 kJ mol^(-1)

Calculate the equilibrium constant for the following reaction at 298 K: 2H_2O (l) to 2H_2(g) + O_2(g) Given : Delta_fG^@ [ H_2O (l)] = - 273.2 kJ mol^(-1) R = 8.314 J mol^(-1) K^(-1) .

Will the reaction, I_(2)(s) +H_(2)S(g) rarr 2HI(g) +S(s) proceed spontaneously in the forward direction of 298K Delta_(f)G^(Theta)HI(g) = 1.8 kJ mol^(-1), Delta_(f)G^(Theta)H_(2)S(g) = 33.8 kJ mol^(-1) ?

Calculate the free energy change for the following reaction at 300 K. 2CuO_((s)) rarr Cu_(2)O_((s))+(1)/(2)O_(2(g)) Given Delta H = 145.6 kJ mol^(-1) and Delta S = 116.JK^(-1) mol^(-1)

Calculate the temperature above which the reaction of lead oxide to lead in the following reaction become spontaneous. PbO(s) + C(s) rarr Pb(s) + CO(g) Given Delta H = 108.4 kJ mol^(-1), Delta S = 190 JK^(-1) mol^(-1)

Calculated the equilibrium constant for the following reaction at 298K : 2H_(2)O(l) rarr 2H_(2)(g) +O_(2)(g) Delta_(f)G^(Theta) (H_(2)O) =- 237.2 kJ mol^(-1),R = 8.314 J mol^(-1) K^(-1)