Home
Class 11
MATHS
If A={1,2,3},B=(alpha,beta,gamma),c=(p,q...

If `A={1,2,3},B=(alpha,beta,gamma),c=(p,q,r) and (f:A to B,g:B to C` are defined by `f={(1,alpha),(2,gamma),(3,beta)},g={(alpha,q),(gamma,p)}` then show that f and g are bijective functions and `(gof)^(-1)=f^(-1)og^(-1).`

Text Solution

Verified by Experts

The correct Answer is:
`og ^(-1)`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES (EXERCISE-1 (C)|34 Videos
  • FUNCTIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES (EXERCISE-1 (A) |24 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISE -6(B)|21 Videos
  • HYPERBOLIC FUNCTIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 9(a)|10 Videos

Similar Questions

Explore conceptually related problems

Let A={1,2,3},B={a,b,c),C={p,q,r}. If f:A to B, g: B to C are defined by f={(1,a),(2,c),(3,b)},g={a,q),(b,r),(c,p)} then show that f^(-1)og^(-1)=(gof)^(-1) .

If f:ArarrB,g:BrarrC are two bijective functions then P.T ("gof")^(-1)=f^(-1)"og"^(-1)

Let f={(1,a),(2,c),(4,d),(3,b)} and g^(-1) = {(2,a),(4,b),(1,c),(3,d)} then show that (gof)^(-1) = f^(-1) og^(-1) .

If alpha, beta, gamma are the roots of x^(3)+px+q=0 then |(alpha, beta, gamma),(beta, gamma, alpha),(gamma, alpha, beta)|=

Consider f: {1,2,3} to {a,b,c} and g: {a,b,c} to {apple, ball, cat} defined as f (1) =a, f (2) =b, f (3)=c, g (a) = apple, g (b) = ball and g (c )= cat. Show that f, g and gof are invertible. Find out f ^(-1) , g ^(-1) and ("gof")^(-1) and show that ("gof") ^(-1) =f ^(-1) og ^(-1).

If f={(a, 0), (b, 2), (c, -3)}, g={(a, -1), (b, 1), (c, 2)} then 2f-3g=

VIKRAM PUBLICATION ( ANDHRA PUBLICATION)-FUNCTIONS -TEXTUAL EXERCISES (EXERCISE-1 (B)
  1. If f : R to R, g : R to R are defined by f (x) = 2x ^(2) + 3 and g (x...

    Text Solution

    |

  2. If f : R to R, g: R to R are defined by f (x) = 3x -1, g (x) = x ^(2) ...

    Text Solution

    |

  3. If f:R to R , g:R to R are defined by f(x) = 3x-1, g(x)=x^(2)+1 then f...

    Text Solution

    |

  4. If f : R to R, g: R to R are defined by f (x) = 3x -1, g (x) = x ^(2) ...

    Text Solution

    |

  5. If f(x) = 1//x, g(x) = sqrt(x) for all x in (0,oo), then find (gof)(x)...

    Text Solution

    |

  6. If f(x)=2x-1,g(x)=(x+1)/(2) for all x in R, find (gof)(x)

    Text Solution

    |

  7. If f(x) = 2, g(x) = x^(2), h(x) = 2x then find (fogoh)(x)

    Text Solution

    |

  8. Find the inverse of the following functions: If a, b in R, f : R to ...

    Text Solution

    |

  9. f : R to (0, oo) defined by f (x) = 5 ^(x). then f ^-1(x)

    Text Solution

    |

  10. f : R to (0, oo) defined by f (x) = log (2) (x). then f ^-1(x)

    Text Solution

    |

  11. If f(x) = 1 + x + x^(2) + …… for |x| lt 1 then show that f^(-1)(x) = (...

    Text Solution

    |

  12. If f:[1,oo) to [1,oo) is defined by f(x) = 2^(x(x-1)) then find f^(-1)...

    Text Solution

    |

  13. If f(x)=(x-1)/(x+1),x ne pm1, show that fof^(-1)(x)=x.

    Text Solution

    |

  14. If A={1,2,3},B=(alpha,beta,gamma),c=(p,q,r) and (f:A to B,g:B to C are...

    Text Solution

    |

  15. If f: R to R, g : R to R defined by f(x) = 3x-2, g(x) = x^(2)+1, then ...

    Text Solution

    |

  16. If f: R to R, g : R to R defined by f(x) = 3x-2, g(x) = x^(2)+1, then ...

    Text Solution

    |

  17. Let f={(1,a),(2,c),(4,d),(3,b)} and g^(-1) = {(2,a),(4,b),(1,c),(3,d)}...

    Text Solution

    |

  18. If f:R to R,g:R to R are defined by f(x)=2x-3,g(x)=x^(3)+5 then find (...

    Text Solution

    |

  19. Let f(x) = x^(2), g(x) = 2^(x). Then solve the equation (fog)(x)=(gof)...

    Text Solution

    |

  20. If f (x) = (x +1)/( x -1) , (x ne pm 1) then find (fofof) (x) and (fof...

    Text Solution

    |