Home
Class 11
MATHS
Use Mathematical induction to prove that...

Use Mathematical induction to prove that `(1 + x)^(n) gt 1 + nx ` for `n ge 2, x gt - 1, x ne 0`

Text Solution

Verified by Experts

The correct Answer is:
`x ne 0 `
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 2 (a)|15 Videos
  • MARCH - 2016 (TELANGANA)

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Section -C (Long answer type quesitons)|7 Videos
  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS |45 Videos

Similar Questions

Explore conceptually related problems

Use mathematical induction to prove that 2 n - 3 le 2^(n-2) for all n ge 5, n in N

Use mathematical induction to prove that statement sum_(k = 1)^(n) (2 K - 1)^(2) = (n (2 n - 1) (2n + 1))/( 3) for all n in N

Use mathematical induction to prove that statement 1^(3) + 2^(3) + 3^(3) + . . . + n^(3) = (n^(2) (n + 1)^(2))/( 4) , AA n in N

Using Mathematical Induction, prove that statement for all n in N 1.2.3+2,3,4+……….+("upto n terms")=(n(n+1)(n+2)(n+3))/(4) .

Show that (x)/(1+x^(2)) lt tan^(-1) x lt x when x gt 0 .

Using the principle of Mathematical Induction, show that 2.4^(2n+1)+3^(3n+1) is divisible by 11, forall n in N

Using the principle of finite Mathematical Induction prove the following: (v) 3.5^(2n+1)+2^(3n+1) is divisible by 17, AA n in N .

Using the principle of finite Mathematical Induction prove the following: (iii) 1/(1.4) + 1/4.7 + 1/7.10 + ……… + "n terms" = n/(3n+1) .

Show that the function f:N to N, given by f (1) =f (2) =1 and f (x) =x -1, for every x gt 2, is onto but not one-one.