Home
Class 11
MATHS
Prove the following (2 n + 7) lt (n + 3)...

Prove the following
`(2 n + 7) lt (n + 3)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
p(n) is true `AA n in N`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 2 (a)|15 Videos
  • MARCH - 2016 (TELANGANA)

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Section -C (Long answer type quesitons)|7 Videos
  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS |45 Videos

Similar Questions

Explore conceptually related problems

Prove the following sum_(1le i) sum_(lt j le n) (i+j)=(n(n^(2)-1))/(2)

Prove the following: C_(0)+(C_(2))/(3) +(C_(4))/(5) + … = (2^(n))/(n+1)

Evaluate the following limits : Lt_(ntooo)(1^(2)+2^(2)+3^(2)+......+n^(2))/n^(3)

Prove that following (C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+(C_(7))/(8)+……=(2^(n)-1)/(n+1)

Prove the following: C_(0)+2*C_(1)_+3*C_(2)+…(n+1)*C_(n)=(n+2).2^(n-1)

Prove the following: 2*C_(0)+3*C_(1)+4*C_(2)+…+(n+2)*C_(n)=(n+4).2^(n-1)

Using the principle of finite Mathematical Induction prove the following: (vi) 2+3.2+4.2^(2)+………."upto n terms" = n.2^(n) .

Prove the following: C_(0)-(C_(1))/(2)+(C_(2))/(3) - …+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

Evaluate the following limits : Lt_(ntooo)(1^(3)+2^(3)+3^(3)+......+n^(3))/(n^(2)(n^(2)+1))

Prove the following: 3*C_(1)+7*C_(2)+11*C_(3)+…( 4n-1)*C_(n)=1+(2n-1)2^(n)